	If L has equ xis, which											-	,								
	A. the x-intercepts are equal D. the slopes are opposite						B. the y-intercepts are equal E. the slopes are reciprocals								C. the slopes are equal						
	A collection nat is the la														s, din	nes	, and q	uarters	S.		
Α.	\$1.64		В.	\$1.78			C.	\$1.8	86		D	. \$1	.89	E.	\$1.	99					
	When the plen (x-1)P(x)	_						_	(x-2	2)², t	he rer	nain	der is 3	3x - 3. V	Vhat	is t	he rem	ainder			
Α.	3x - 3		В.	3x ² - 6	x + 3			C.	3			О. х	· - 1	Е	. x -	2					
4.	If $f(x) = 3x$	· 2, f	inc	l f(f(f(3	3))).		A.	19		В.	55	(C. 75	D.	107		E. 16	63			
5.	5. What is the remainder when x^3 - $2x^2$ + 4 is divided by x + 2?																				
Α.	-12	B.	0		C.	4		[Э.	6		E.	12								
	6. Let p be a prime number and k an integer such that $x^2 + kx + p = 0$ has two positive integer solutions. What is the value of $k + p$?																				
Α.	1	B.	-1		C.	0		[Э.	2		E.	-2								
	7. What is the least number of prime numbers (not necessarily different) that 3185 must be multiplied by so that the product is a perfect cube?																				
Α.	1	B.	2		C.	3		[Э.	4		E.	5								
	Two adjace dth, and he																				
Α.	2	B.	3		C.	4		[Э.	5		E.	6								
9.	(tan t - sin t	cos	s t)/	(tan t)	=																
Α.							c. si	n² t			D.	cos² 1	t	E.	E. 1						
	The count right. Finc	_									rn at 10		5 11	2 6 12	1 3 7 13		4 8 14	9 15	16		
A.	1561		В.	1641			С	. 15	559			D.	1639			E.	1483				
	The soluti equalities?	on:	set (of x ² - 3	3x - 1	8 з	0 is	a su	bse	t of	the sc	lutio	on set c	of whic	h of	the	follow	/ing			
Α.	A. x ² - x - 20 ³ 0 B. (x						$(4)/(x + 3)^3 0$						C. x ²	C. $x^2 - 8x + 14^3 0$							
D.	both B and	d C			E.	all	of A	, B, a	anc	l C											

12. If $2a - 4b = 128b^3 - 16a^3$ and $a^1 2b$, find $a^2 + 2ab + 4b^2$.

Α.	-1/8		B.	-1/2			C.	1/2				D.	1/8			E.	2	
Squ	13. Square ABCD is inscribed in circle O (that is, A, B, C, and D all lie on the circle) and its area is a. Square EFGH is inscribed in a semicircle of circle O (that is, E and F lie on a diameter and G and H lie on the circle). What is the area of square EFGH?																	
Α.	a/5		B.	2a/5			C.	a/3				D.	a/2			E.	3a/5	
	14. Consider all arrangements of the letters AMATYC with either the A's together or the A's on the ends. What fraction of all possible such arrangements satisfies these conditions?																	
A.	1/5		B.	2/15			C.	1/3				D.	2/5			E.	3/5	
dif1	15. The year 2003 is prime, but its reversal, 3002, is not. In fact, 3002 is the product of exactly three different primes. Let N be the sum of these three primes. How many other positive integers are the products of exactly three different primes with this sum N?																	
A.	0	B.	1		C. :	2			D.	3			E.	4				
	16. In a group of 30 students, 25 are taking math, 22 English, and 19 history. If the largest and smallest number who could be taking all three courses are M and m respectively, find M + m.																	
A.	17	B.	19		C	22			D.	23			E.	25				
17. A boat with an iII passenger is 7 1/2 mi north of a straight coastline which runs east and west. A hospital on the coast is 60 miles from the point on shore south of the boat. If the boat starts toward shore at 15 mph at the same time an ambulance leaves the hospital at 60 mph and meets the ambulance, what is the total distance (to the nearest 0.5 mile) traveled by the boat and the ambulance?																		
Α.	60.5		В	. 61			C.	61.5				D.	62			E	. 62.5	
18. If each letter in the equation $\sqrt{\text{AMATYC}}$ = MYM represents a different decimal digit, find T's value.																		
A.	3		B.	4		C.	5			D.	6			E.	7			
19. If a, b, c, and d are nonzero numbers such that c and d are solutions of $x^2 + ax + b = 0$ and a and b are solutions of $x^2 + cx + d = 0$, find a + b + c + d.																		
A.	-2		B.	-1		C.	0			D.	1			E.	2			
der sec	20. All and Bob are at opposite ends of a diameter of a silo in the shape of a tall right circular cylinder with radius 150 ft. All is due west of Bob. All begins walking along the edge of the silo at 6 ft per second at the same moment that Bob begins to walk due east at the same speed. The value closest to the time in seconds when All first can see Bob is														ft per			
A.	46		В. 4	4 7		C.	48			D.	49			E.	50			