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3.1 Quadratic Functions

• Objectives
– Recognize characteristics of parabolas
– Graph parabolas
– Determine a quadratic function’s minimum or 

maximum value.
– Solve problems involving a quadratic 

function’s minimum or maximum value.
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Quadratic functions 
f(x)= graph to be a 
parabola. The vertex of the 
parabolas is at (h,k) and “a”
describes the “steepness” and 
direction of the parabola given   

cbxax ++2

+−= 2 khxaxf )()(



12 Feb 2009 MATH 1314 College Algebra Ch.3 3

Minimum (or maximum) function 
value for a quadratic occurs at the 

vertex.
• If equation is not in standard form, you may have 

to complete the square to determine the point 
(h,k).  If parabola opens up, f(x) has a min., if it 
opens down, f(x) has a max.

• This parabola opens up with a “steepness” of 2 
and the minimum is at (1,1). (graph on next page)
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Graph of 
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3.2 Polynomial Functions & Their 
Graphs

• Objectives
– Identify polynomial functions.
– Recognize characteristics of graphs of polynomials.
– Determine end behavior.
– Use factoring to find zeros of polynomials.
– Identify zeros & their multiplicities.
– Understand relationship between degree & turning 

points.
– Graph polynomial functions.
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General form of a polynomial

• The highest degree in the polynomial is the 
degree of the polynomial.

• The leading coefficient is the coefficient of the 
highest degreed term.

• Even-degreed polynomials have both ends 
opening up or opening down.

• Odd-degreed polynomials open up on one end 
and down on the other end.

• WHY? (plug in large values for x and see!!)
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Zeros of Polynomials
• When f(x) crosses the x-axis.
• How can you find them?

– Let f(x)=0 and solve.
– Graph f(x) and see where it crosses the x-axis.
What if f(x) just touches the x-axis, doesn’t cross it, then 

turns back up (or down) again?
This indicates f(x) did not change from pos. or neg. 
(or vice versa), the zero therefore exists from a 
square term (or some even power). We say this has a 
multiplicity of 2 (if squared) or 4 (if raised to the 4th

power).
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Turning points of a polynomial

• If a polynomial is of degree “n”, then it has 
at most n-1 turning points.

• Graph changes direction at a turning point.
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Graph
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Graph, state zeros & end behavior

• END behavior: 3rd degree equation and the leading 
coefficient is negative, so if x is a negative number such as 
-1000, f(x) would be the negative of a negative number, 
which is positive! (f(x) goes UP as you move to the left.) 
and if x is a large positive number such as 1000, f(x) would 
be the negative of a large positive number (f(x) goes 
DOWN as you move to the right.) 

• ZEROS: x = 0, x = 3 of multiplicity 2
• Graph on next page
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Graph f(x)
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Which function could possibly 
coincide with this graph?
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Correct Answer: (4)
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3.3 Dividing polynomials; 
Remainder and Factor Theorems

• Objectives
– Use synthetic division to divide polynomials.
– Evaluate a polynomials using the Remainder 

Theorem.
– Use the Factor Theorem to solve a polynomial 

equation.
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Remainders can be useful!

• The remainder theorem states: If the 
polynomial f(x) is divided by (x – c), then 
the remainder is f(c).

• If you can quickly divide, this provides a 
nice alternative to evaluating f(c).
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Factor Theorem

• f(x) is a polynomial, therefore f(c) = 0 if 
and only if x – c is a factor of f(x).

• If we know a factor, we know a zero!
• If we know a zero, we know a factor!
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3.4 Zeros of Polynomial Functions

• Objectives
– Use Rational Zero Thm. to find possible zeros.
– Find zeros of a polynomial function.
– Solve polynomial equations.
– Use the Linear Factorization Theorem to find 

polynomials, given the zeros.
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Rational Root (Zero) Theorem

• If “a” is the leading coefficient and “c” is the 
constant term of a polynomial, then the only 
possible rational roots are    factors of “c” divided 
by    factors of “a”.

• Example:  
• To find the POSSIBLE rational roots of f(x), we 

need the FACTORS of the leading coefficient and 
the factors of the constant term.  Possible rational 
roots are
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How many zeros does a polynomial 
with rational coefficients have?

• An nth degree polynomial has a total of n zeros.  
Some may be rational, irrational or complex.  

• For EVEN degree polynomials with RATIONAL 
coefficients, irrational zeros exist in pairs (both the 
irrational # and its conjugate). 

• If          is a zero,          is a zero
• Complex zeros exist in pairs (both the complex # 

and its conjugate).
• If a + bi is a zero, a – bi is a zero

ba + ba −
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3.5 Rational Functions & Their 
Graphs

• Objectives
– Find domain of rational functions.
– Identify vertical asymptotes.
– Identify horizontal asymptotes.
– Graph rational functions.
– Identify slant (oblique) asymptotes.
– Solve applied problems with rational functions.
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Vertical asymptotes
• Look for domain restrictions.  If there are values 

of x which result in a zero denominator, these 
values would create EITHER a hole in the graph 
or a vertical asymptote.  Which?  

• If the factor that creates a zero denominator 
cancels with a factor in the numerator, there is a 
hole.  

• If you cannot cancel the factor from the 
denominator, a vertical asymptote exists. Note 
how the values of f(x) approach positive or 
negative infinity as the x-values get very close to 
the value that creates the zero denominator.
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Example
•

• f(x) is undefined at x = 2
• As 

• Therefore, a vertical asymptote exists at x=2.  The 
graph extends down as you approach 2 from the 
left, and it extends up as you approach 2 from the 
right.
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What is the end behavior of this 
rational function?

• If you are interested in the end behavior, you are 
concerned with very, very large values of x.  

• As x gets very, very large, the highest degree term 
becomes the only term of interest.  (The other 
terms become negligible in comparison.)

• SO, only examine the ratio of the highest degree 
term in the numerator over the highest degree term 
of the denominator (ignore all others!)

• As x gets large,                      becomes
• THEREFORE, a horizontal asymptote exists, y=3 
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What if end behavior follows a line 
that is NOT horizontal?

• The ratio of the highest-degree terms cancels to 4x
• This indicates we don’t have a horizontal 

asymptote.  Rather, the function follows a slanted 
line with a slope = 4.  (becomes y=4x as we head 
towards infinity!)

• To find the exact equation of the slant asymptote, 
proceed with division, as previously done.  The 
quotient is the slant (oblique) asymptote.  For this 
function, y = 4x – 11/2
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Graph of this rational function
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What is the equation of the oblique 
asymptote?

1. y = 4x – 3
2. y = 2x – 5/2
3. y = 2x – ½
4. y = 4x + 1

12
234)(

2

+
+−

=
x

xxxf

Correct Answer: (2)
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3.6 Polynomial & Rational 
Inequalities

• Objectives
– Solve polynomial inequalities.
– Solve rational inequalities.
– Solve problems modeled by polynomial or 

rational inequalities.
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Solving polynomial inequalities
• Always compare the polynomial to zero.
• Factor the polynomial. We are interested 

in when factors are either pos. or neg., so 
we must know when the factor equals 
zero. 

• The values of x for which the factors equal 
zero provide the cut-offs for regions to 
check if the polynomial is pos. or neg.
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(x – 3)(x + 1)(x – 6) < 0
• In order for the product of 3 terms to be less than 

zero (negative), either all 3 terms must be neg. or 
exactly 1 of them be neg.

• The 3 “cut-off” values are x = 3,-1,6
• The 3 cut-off values create 4 intervals along the x-

axis:
• Pick a point in each interval & determine if that 

value for x would make all 3 factors neg. or exactly 
1 negative.  If so, the function is < 0 on that interval.

x<-1, f(x) < 0 -1<x<3,  f(x) > 0
3<x<6,  f(x)< 0 x>6,  f(x) > 0 

• Solution:  {x: x < -1 or 3 < x < 6}
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Given the following graph of f(x), 
give interval notation for x-values 

such that f(x)>0.
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Correct Answer: (1)
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Solving rational inequalities
• VERY similar to solving polynomial inequalites

EXCEPT if the denominator equals zero, there 
is a domain restriction.  The function COULD 
change signs on either side of that point.

• Step 1: Compare inequality to zero. (add 
constant to both sides and use a common 
denominator to have a rational expression)

• Step 2: Factor both numerator & denominator to 
find “cut-off” values for regions to check when 
function becomes positive or negative.
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