
Graphing  Quadratic 
Functions

Chapter 2 – Section 2
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Let a, b, and c be real numbers a ≠ 0. The function 
f (x) = ax2 + bx + c

is called a quadratic function.

The graph of a quadratic function is a parabola.

Every parabola is symmetrical about a line called the axis
(of symmetry).

The intersection point of the 
parabola and the axis is 
called the vertex of the 
parabola. 
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y

axis

f (x) = ax2 + bx + c
vertex
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The leading coefficient of  ax2 + bx + c is a.

When the leading coefficient
is positive, the parabola 
opens upward and the 
vertex is a minimum.

When the leading 
coefficient is negative, 
the parabola opens downward
and the vertex is a maximum.
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f(x) = ax2 + bx + c
a > 0 
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minimum
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The simplest quadratic functions are of the form
f (x) = ax2 (a ≠ 0)

These are most easily graphed by comparing them with the 
graph of y = x2. 

Example: Compare the graphs of
,                   and2xy = 2

2
1)( xxf = 22)( xxg =

2
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1)( xxf =

22)( xxg =

2xy =



Mathematical Applications by Harshbarger (8th ed) Copyright © by Houghton Mifflin Company 5

Example: Graph  f (x) = (x – 3)2 + 2 and find the vertex and axis.

f (x) = (x – 3)2 + 2 is the same shape as the graph of
g (x) = (x – 3)2 shifted upwards two units.
g (x) = (x – 3)2 is the same shape as y = x2 shifted to the right 
three units.

f (x) = (x – 3)2 + 2

g (x) = (x – 3)2y = x 2

- 4
x

y

4

4

vertex
(3, 2)
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Example: Graph the parabola f (x) = 2x2 + 4x – 1 and find the axis

and vertex.

f (x) = 2x2 + 4x – 1 original equation

f (x) = 2( x2 + 2x) – 1 factor out 2

f (x) = 2( x2 + 2x + 1) – 1 – 2 complete the square  

f (x) = 2( x + 1)2 – 3 standard form

a > 0 → parabola opens upward like y = 2x2.
h = –1, k = –3 → axis x = –1, vertex (–1, –3). x = –1

f (x) = 2x2 + 4x – 1

The standard form for the equation of a quadratic function is:
f (x) = a(x – h)2 + k (a ≠ 0)

The graph is a parabola opening upward if a > 0 and opening 
downward if a < 0. The axis is x = h, and the vertex is (h, k).

(–1, –3)
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Example: Graph and find the vertex and x-intercepts 
of f (x) = –x2  + 6x + 7.

f (x) = – x2 + 6x + 7 original equation

f (x) = – ( x2  – 6x) + 7 factor out –1

f (x) = – ( x2 – 6x + 9) + 7 + 9 complete the square

f (x) = – ( x – 3)2 + 16 standard form

a < 0 → parabola opens downward.
h = 3, k = 16 → axis x = 3, vertex (3, 16). 
Find the x-intercepts by solving
–x2 + 6x + 7 = 0.
(–x + 7 )( x + 1) = 0 factor

x = 7, x = –1  
x-intercepts (7, 0), (–1, 0)

x = 3f(x) = –x2  + 6x + 7

(7, 0)(–1, 0)

(3, 16)
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Example: Find an equation for the parabola with vertex (2, –1)
passing through the point (0, 1). 

f (x) = a(x – h)2 + k standard form
f (x) = a(x – 2)2 + (–1) vertex (2, –1) = (h, k)

y = f(x)

→−−= 1)2(
2
1)( 2xxf 12

2
1)( 2 +−= xxxf

(0, 1)

(2, –1)

Since (0, 1) is a point on the parabola:  f (0) = a(0 – 2)2 – 1
1 = 4a –1 and

2
1

=a
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Vertex of a Parabola

Example: Find the vertex of the graph of  f (x) = x2  – 10x + 22.

The vertex of the graph of  f (x) = ax2 + bx + c  (a ≠ 0)

f (x) = x2 – 10x + 22  original equation
a = 1, b = –10, c = 22

is  ,
2 2
b bf
a a

⎛ ⎞⎛ ⎞− −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

At the vertex, 5
)1(2

10
2

=
−

=
−

=
a
bx

So, the vertex is (5, -3).
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Example: A basketball is thrown from the free throw line from 
a height of six feet. What is the maximum height of the ball if 
the path of the ball is: 21 2 6.

9
y x x= − + +

The path is a parabola opening downward. 
The maximum height occurs at the vertex.

2  ,
9
162

9
1 2 =

−
=→++

−
= baxxy

.9
2

=
−

=
a
bxAt the vertex, 

( ) 159
2

==⎟
⎠
⎞

⎜
⎝
⎛ − f

a
bf

So, the vertex is (9, 15). 
The maximum height of the ball is 15 feet. 
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Example: A fence is to be built to form a 
rectangular corral along the side of a barn 
65 feet long. If 120 feet of fencing are 
available, what are the dimensions of the 
corral of maximum area?

barn

corralx x
120 – 2x

Let x represent the width of the corral and 120 – 2x the length.
Area = A(x) = (120 – 2x)x = –2x2 + 120x

The graph is a parabola and opens downward.
The maximum occurs at the vertex where ,

2a
bx −

=

a = –2 and b = 120 .30
4

120
2

=
−
−

=
−

=→
a
bx

120 – 2x = 120 – 2(30) = 60
The maximum area occurs when the width is 30 feet and the 
length is 60 feet.



Add, Subtract, Multiply 
Polynomials

Chapter 2 – Section 4
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A polynomial of two terms is a binomial.

7xy2 + 2y

A polynomial of three terms is a trinomial.

8x2 + 12xy + 2y2

The constant term is 15.

The degree is 3.

The leading coefficient is 6.

The leading coefficient of a polynomial is the coefficient of the 
variable with the largest exponent.  

6x3 – 2x2 + 8x + 15

The constant term is the term without a variable.
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linear f (x) = mx + b one

f (x) = ax2 + bx + c, a ≠ 0quadratic two

cubic threef (x) = ax3 + bx2 + cx + d, a ≠ 0

DegreeFunction Equation

Common polynomial functions are named according to their degree.

The degree of a polynomial is the greatest of the degrees of any 
of its terms. The degree of a term is the sum of the exponents of 
the variables.

Examples: 3y2 + 5x + 7
21x5y + 3x3 + 2y2

degree 2
degree 6
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To add polynomials, combine like terms.
Examples: 1. Add (5x3 + 6x2 + 3) + (3x3 – 12x2 – 10).

Use a horizontal format.

(5x3 + 6x2 + 3) + (3x3 – 12x2 – 10)
= (5x3 + 3x3 ) + (6x2 – 12x2) + (3 – 10)

Rearrange and group like 
terms.

= 8x3 – 6x2 – 7 Combine like terms.

2. Add (6x3 + 11x –21) + (2x3 + 10 – 3x) + (5x3 + x – 7x2 + 5).
Use a vertical format.

6x3 + 11x – 21
2x3              – 3x + 10
5x3 – 7x2 +     x +   5

13x3 – 7x2 +   9x – 6

Arrange terms of each polynomial in 
descending order with like terms in 
the same column.

Add the terms of each column.
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The additive inverse of the polynomial x2 + 3x + 2 is –(x2 + 3x + 2).

This is equivalent to the additive inverse of each of the terms.

–(x2 + 3x + 2) = – x2 – 3x – 2

To subtract two polynomials, add the additive inverse of the 
second polynomial to the first.

Example: Add (4x2 – 5xy + 2y2) – (–x2 + 2xy – y2).

(4x2 – 5xy + 2y2) – (–x2 + 2xy – y2)
= (4x2 – 5xy + 2y2) + (x2 – 2xy + y2)
= (4x2 + x2) + (–5xy – 2xy) + (2y2 + y2)
= 5x2 – 7xy + 3y2 

Rewrite the subtraction as the
addition of the additive inverse.

Rearrange and group like terms.

Combine like terms.
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Let P(x) = 2x2 – 3x + 1 and R(x) = – x3 + x + 5. 

Examples: 1. Find P(x) + R(x).
P(x) + R(x) = (2x2 – 3x + 1) + (– x3 + x + 5)

= – x3 + 2x2 + (–3x + x) + (1 + 5)
= – x3 + 2x2 – 2x + 6

2. If D(x) = P(x) – R(x), find D(–2).
P(x) – R(x) = (2x2 – 3x + 1) – (– x3 + x + 5)

= (2x2 – 3x + 1) + ( x3 – x – 5)
=   x3 + 2x2 – 4x – 4 

D(–2) = (–2)3 + 2(–2)2 – 4(–2) – 4
= 4
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To multiply a polynomial by a monomial, use the distributive 
property and the rule for multiplying exponential expressions.

Examples: 1. Multiply: 2x(3x2 + 2x – 1).

= 6x3 + 4x2 – 2x

= 2x(3x2) + 2x(2x) + 2x(–1) 

2. Multiply: –3x2y(5x2 – 2xy + 7y2).

= –3x2y(5x2) – 3x2y(–2xy) – 3x2y(7y2)

= –15x4y + 6x3y2 – 21x2y3
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To multiply two polynomials, apply the distributive property.

Example: Multiply: (x – 1)(2x2 + 7x + 3).
= (x – 1)(2x2) + (x – 1)(7x) + (x – 1)(3)
= 2x3 – 2x2 + 7x2 – 7x + 3x – 3
= 2x3 + 5x2 – 4x – 3

Two polynomials can also be multiplied using a vertical format.

– 2x2 – 7x – 3
2x3 + 7x2 + 3x

2x3 + 5x2 – 4x – 3x

Multiply – 1(2x2 + 7x + 3).
Multiply x(2x2 + 7x + 3).

Add the terms in each column.

2x2 + 7x + 3
x – 1

Example:
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To multiply two binomials use a method called FOIL, 
which is based on the distributive property. The letters 
of FOIL stand for First, Outer, Inner, and Last. 

1. Multiply the first terms.

2. Multiply the outer terms.

3. Multiply the inner terms.

4. Multiply the last terms.

5. Add the products.

6. Combine like terms.



Mathematical Applications by Harshbarger (8th ed) Copyright © by Houghton Mifflin Company 21

Examples: 1. Multiply: (2x + 1)(7x – 5).

= 2x(7x) + 2x(–5) + (1)(7x) + (1)(–5)
= 14x2 – 10x + 7x – 5 
= 14x2 – 3x – 5 

2. Multiply: (5x – 3y)(7x + 6y).

= 35x2 + 30xy – 21yx – 18y2

= 35x2 + 9xy – 18y2

= 5x(7x) + 5x(6y) + (– 3y)(7x) + (– 3y)(6y)

First Outer Inner Last

First Outer Inner Last
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Examples: 1. (3x + 2)(3x – 2)
= (3x)2 – (2)2

= 9x2 – 4

(a + b)(a – b)

= a2 – b2

The multiply the sum and difference of two terms, 
use this pattern:

= a2 – ab + ab – b2

square of the first term

2. (x + 1)(x – 1)
= (x)2 – (1)2

= x2 – 1

square of the second term
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Examples: 1. Multiply: (2x – 2)2 .

(a + b)2 = (a + b)(a + b)

= a2 + 2ab + b2

= (2x)2 + 2(2x)(– 2) + (– 2)2

= 4x2 – 8x + 4

2. Multiply: (x + 3y)2 .
= (x)2 + 2(x)(3y) + (3y)2

= x2 + 6xy + 9y2

= a2 + ab + ab + b2

square of the first term
twice the product of the two terms square of the last term

To square a binomial, use this pattern:
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Example: The length of a rectangle is (x + 5) ft. The width 
is (x – 6) ft. Find the area of the rectangle in terms of     
the variable x.

A = L · W = Area

x – 6

x + 5

L = (x + 5) ft
W = (x – 6) ft

A = (x + 5)(x – 6 ) = x2 – 6x + 5x – 30 
= x2 – x – 30 

The area is (x2 – x – 30) ft2.
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