
Matrices
Chapter 3 – Sections 1 & 3
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A matrix is a rectangular array of real numbers. 

3 1 2
7 1 0.5

A
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦

Each entry can be identified by its position in the 
matrix.

7 is in Row 2 Column 1. 
-2 is in Row 1 Column 3.

If m = n the matrix is said to be square of order n.

Matrix A has 2 horizontal rows and 3 vertical columns.

A matrix with m rows and n columns is of order m n.×

A is of order 2   3.×
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Examples: Find the order of each matrix 

2 3 1 0
4 2 1 4
1 1 6 2

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A has three rows and 
four columns.

[ ]2 5 2 1 0B = −
B has one row and five columns. 

B is called a  row matrix.

3 1
6 2

C ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

The order of A is 3    4.×

The order of B is 1   5.×

C is a 2    2 square matrix.×
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11 12 1

21 22 2

1 1 1

n

n
i j

m m m mn

a a a
a a a

A a

a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤= =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

.

Two matrices A = [aij] and B = [bij] are equal if they 
have the same order and aij = bij for every i and j.

For example,  since both matrices 

are of order 2 2 and all corresponding entries are equal.

10.5 9 3
21 7 0.25 74

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦
×

An m n matrix can be written×
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To add matrices:
1. Check to see if the matrices have the same order.
2. Add corresponding entries.

Example: Find the sums A + B and B + C.
1 5

2 0 6 3 3 0
2 1         

1 0 3 3 2 4
0 6

A B C
⎡ ⎤

−⎡ ⎤ ⎡ ⎤⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎢ ⎥ − −⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

2 0 6 3 3 0 5 3 6
  

1 0 3 3 2 4 2 2 1
B C

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ = + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

A has order 3 2 and B has order 2 3. So they cannot 
be added.

× ×
C has order 2 3 and can be added to B.×
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To subtract matrices:
1. Check to see if the matrices have the same order.
2. Subtract corresponding entries.

Example: Find the differences A – B and B – C.
3 7 2 1 1 5 1

     
2 1 4 5 2 1 6

A B C
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

3 7 2 1 1 8
2 1 4 5 2 6

A B
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

− = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
Since B is of order 2 2 and C is of order 3 2, 
they cannot be subtracted.

× ×

A and B are both of order 2 2 and can be subtracted.×
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Example: Find 2A and –3A for A = .                    
2 5 1
3 4 0
2 7 2

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2 2 2
2 2 2
2 2 2

(2) (5) ( 1) 4 10 2
2 (3) (4) (0) 6 8 0

(2) (7) (2) 4 14 4
A

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

(2) (5) ( 1) 6 15 3
1 (3) (4) (0) 9 12 0
3

(2) (7)

3 3 3
3 3 3
3 3 ) 6 21 63(2

A
− − −⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥− =
− − −
− − − = − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦− ⎣ ⎦− −

If A = [aij] is an m n matrix and c is a scalar
(a real number), then the m n matrix cA = [caij] is the 
scalar multiple of A by c.

×
×
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Example: Calculate the value of 3A – 2B + C with

2 1 5 2 5 2
3 5    1 0  and 1 0
4 2 3 1 3 1

A B C
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

2 1 5 2 5 2
3 2 3 3 5 2 1 0 1 0

4 2 3 1 3 1

6 3 10 4 5 2 1 5
9 15 2 0 1 0 8 15
12 6 6 2 3 1 9 5

A B C
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + = − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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An augmented matrix and a coefficient matrix are 
associated with each system of linear equations.

For the system
2 3 12

8        16
x y z
x y
+ − =⎧

⎨ − =⎩

The coefficient matrix is .
2 3 1
1 8 0

−⎡ ⎤
⎢ ⎥−⎣ ⎦

The augmented matrix is   .⎥
⎦

⎤
⎢
⎣

⎡
16          0     8-     1
12          1-     3     2
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Elementary Row Operations.

1. Interchange two rows of a matrix. 

2. Multiply a row of a matrix by a nonzero constant.

3. Add a multiple of one row of a matrix to another.

A sequence of elementary row operations transforms 
the augmented matrix of a system into the augmented 
matrix of another system with the same solutions as 
the original system.

In this case we say the augmented matrices are row 
equivalent.
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Example: Apply the elementary row operation R1 ↔ R2

to the augmented matrix of the system .2 8
3 10
x y
x y
+ =⎧

⎨ − =⎩

R1 ↔ R2 ↓ ↓

Row Operation    Augmented Matrix System

2 8
3 10
x y
x y

Note that the two systems are equivalent.

+ =⎧
⎨ − =⎩

⎥
⎦

⎤
⎢
⎣

⎡
10        1-     3

8          2       1

3 10
2 8

x y
x y
− =⎧

⎨ + =⎩
⎥
⎦

⎤
⎢
⎣

⎡
8          2        1

10         1-      3
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Example: Apply the elementary row operation 3R2

to the augmented matrix of the system .2 8
3 10
x y
x y
+ =⎧

⎨ − =⎩

3R2 ↓ ↓

Row Operation    Augmented Matrix System

2 8
3 10
x y
x y
+ =⎧

⎨ − =⎩
⎥
⎦

⎤
⎢
⎣

⎡
10        1-     3

8          2       1

3 6 24
9 3 30
x y
x y
+ =⎧

⎨ − =⎩⎥
⎦

⎤
⎢
⎣

⎡
30        3-       9
24        6        3
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Example: Apply the row operation –3R1 + R2 

to the augmented matrix of the system .2 8
3 10
x y
x y
+ =⎧

⎨ − =⎩

–3R1 + R2 ↓ ↓

Row Operation    Augmented Matrix System

2 8
3 10
x y
x y
+ =⎧

⎨ − =⎩
⎥
⎦

⎤
⎢
⎣

⎡
10        1-     3

8          2       1

2 8
7 14

x y
y
+ =⎧

⎨− = −⎩
⎥
⎦

⎤
⎢
⎣

⎡
14-      7-     0
8          2       1
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