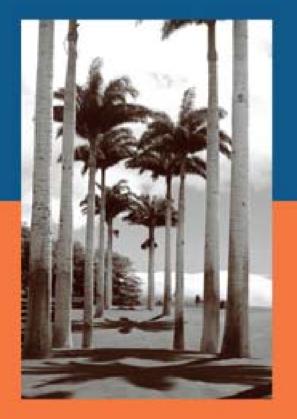
COLLEGE ALGEBRA

with Modeling and Visualization



GARY ROCKSWOLD

Functions and Their Representations

- Learn function notation
- Represent a function four different ways
- Define a function formally
- Identify the domain and range of a function
- Use calculators to represent functions (optional)
- Identify functions

Idea Behind a Function

- Recall that a relation is a set of ordered pairs (x, y).
- If we think of values of x as being inputs and values of y as being outputs, a function is a relation such that
 - for each input there is <u>exactly one</u> output. This is symbolized by *output* = f(input) or

$$y = f(x)$$

Function Notation

- y = f(x)
 - Is pronounced "y is a function of x."
 - Means that given a value of x (input), there is <u>exactly one</u> corresponding value of y (output).
 - x is called the independent variable as it represents inputs, and y is called the dependent variable as it represents outputs.
 - Note that: f(x) is <u>NOT</u> f multiplied by x. f is NOT a variable, but the name of a function (the name of a relationship between variables).

Domain and Range of a Function

- The set of all meaningful inputs is called the DOMAIN of the function.
- The set of corresponding outputs is called the RANGE of the function.

Formal Definition of a Function

 A function is a relation in which each element of the domain corresponds to exactly one element in the range.

Example 1

- Suppose a car travels at 70 miles per hour.
 Let y be the distance the car travels in x hours.
 Then y = 70 x.
- Since for each value of x (that is the time in hours the car travels) there is just one corresponding value of y (that is the distance traveled), y is a function of x and we write

$$y = f(x) = 70x$$

- Evaluate f(3) and interpret.
 - f(3) = 70(3) = 210. This means that the car travels
 210 miles in 3 hours.

Example 2

Given the following data, is y a function of x?

Input x	3	4	8
Output y	6	6	- 5

Note: The data in the table can be written as the set of ordered pairs $\{(3,6), (4,6), (8, -5)\}$.

Yes, y is a function of x, because for each value of x, there is just one corresponding value of y. Using function notation we write f(3) = 6; f(4) = 6; f(8) = -5.

Example 3

- Undergraduate Classification at Study-Hard University (SHU) is a function of Hours Earned. We can write this in function notation as C = f(H).
- Why is C a function of H?
 - For each value of *H* there is <u>exactly one</u> corresponding value of C.
 - In other words, for each input there is <u>exactly</u> one corresponding output.

$\boldsymbol{C}=\boldsymbol{f}(\boldsymbol{H})$

 Classification of Students at SHU

From Catalogue

No student may be classified as a sophomore until after earning at least 30 semester hours.

No student may be classified as a junior until after earning at least 60 hours.

No student may be classified as a senior until after earning at least 90 hours.

- Evaluate f(20)
 - f(20) = Freshman
- Evaluate f(30)
 - *f*(30) = **Sophomore**
- Evaluate f(0)
 - *f*(0) = **Freshman**
- Evaluate f(61)
 - *f*(61) = Junior
- What is the domain of f?
- What is the range of f?

$\boldsymbol{C}=\boldsymbol{f}(\boldsymbol{H})$

- Domain of f is the set of <u>non-negative integers</u> $\{0,1,2,3,4...\}$
 - Alternatively, some individuals say the domain is the set of <u>positive rational numbers</u>, since technically one could earn a fractional number of hours if they transferred in some quarter hours. For example, 4 quarter hours = 2 2/3 semester hours.
 - Some might say the domain is the set of <u>non-negative real</u> <u>numbers</u> [0,∞), but this set includes irrational numbers. It is impossible to earn an irrational number of credit hours. For example, one could not earn √2 hours.
- Range of *f* is {Fr, Soph, Jr, Sr}

Questions: Identifying Functions

- Referring to the previous example concerning SHU, is hours earned a function of classification? That is, is H = f(C)? Explain why or why not.
- Is classification a function of years spent at SHU? Why or why not?
- Given $x = y^2$, is y a function of x? Why or why not?
- Given $x = y^2$, is x a function of y? Why or why not?
- Given $y = x^2 2$, is y a function of x? Why, why not?

Answers

- Is hours earned a function of classification? That is, is H = f(C)?
- That is, for each value of C is there just one corresponding value of H?
 - No. One example is
 - if *C* = Freshman, then *H* could be 3 or 10 (or lots of other values for that matter)

- Is classification a function of years spent at SHU? That is, is C = f(Y)?
- That is, for each value of Y is there just one corresponding value of C?
 - No. One example is
 - if Y = 4, then C could be Sr. or Jr. It could be Jr if a student was a part time student and full loads were not taken.

- Given $x = y^2$, is y a function of x?
- That is, given a value of x, is there just one corresponding value of y?

• No, if x = 4, then y = 2 or y = -2.

- Given $x = y^2$, is x a function of y?
- That is, given a value of y, is there just one corresponding value of x?
 - Yes, given a value of y, there is just one corresponding value of x, namely y².

- Given $y = x^2 2$, is y a function of x?
- That is, given a value of x, is there just one corresponding value of y?
 - Yes, given a value of x, there is just one corresponding value of y, namely x² –2.

Five Ways to Represent a Function (page 31)

- Verbally
- Numerically
- Diagrammaticly
- Symbolically
- Graphically

C = f(H) (Referring to previous SHU example)

- Verbal Representation.
 - If you have less than 30 hours, you are a freshman.
 - If you have 30 or more hours, but less than 60 hours, you are a sophomore.
 - If you have 60 or more hours, but less than 90 hours, you are a junior.
 - If you have 90 or more hours, you are a senior.

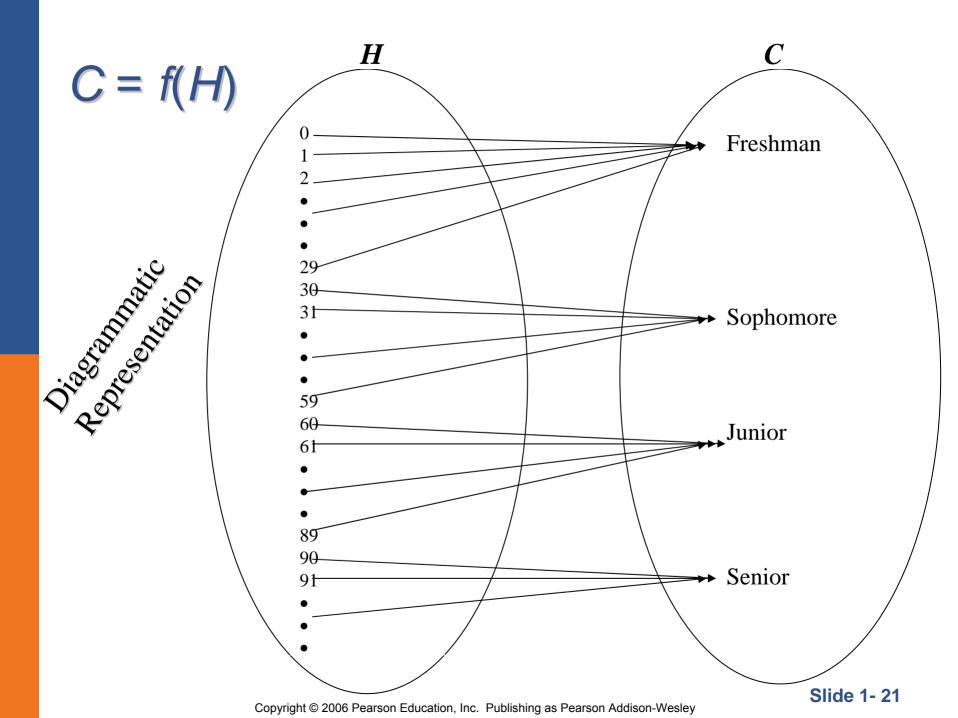
C = f(H)

Numeric Representation

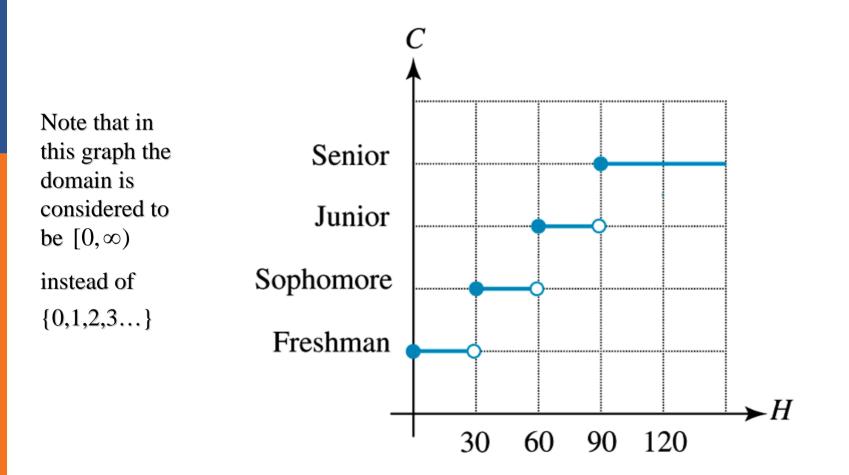
H	С
0	Freshman
1	Freshman
?	
?	
?	
? ?	
29	Freshman
30	Sophomore
31 ?	Sophomore
?	
?	
?	
59	Sophomore
60	Junior
61	Junior
?	
?	
?	
89	Junior
90	Senior
91	Senior
?	
?	
?	

Symbolic Representation

 $C = f(H) = \begin{cases} \text{Freshman} & \text{if } 0 \le H < 30\\ \text{Sopho} & \text{if } 30 \le H < 60\\ \text{Junior} & \text{if } 60 \le H < 90\\ \text{Senior} & \text{if } H \ge 90 \end{cases}$

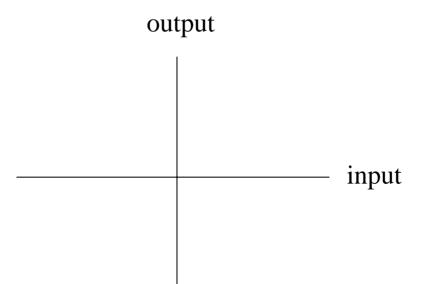


C = f(H) Graphical Representation



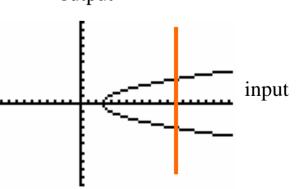
Some Notes on Graphical Representation

 Inputs are typically graphed on the horizontal axis and outputs are typically graphed on the vertical axis.



Notes on Graphical Representation Continued

 Vertical line test (p 39). To determine if a graph represents a function, simply visualize vertical lines in the *xy*-plane.
 If each vertical line intersects a graph at no more than one point, then it is the graph of a function.
 Why does this work?

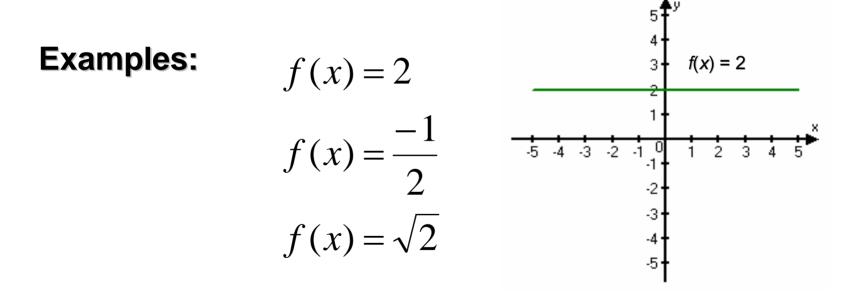


Types of Functions and Their Rates of Change

- Identify and use constant and linear functions
- Interpret slope as a rate of change
- Identify and use nonlinear functions
- Recognize linear and nonlinear data
- Use and interpret average rate of change
- Calculate the difference quotient

Constant Function

A function *f* represented by *f*(*x*) = *b*,
 where *b* is a constant (fixed number), is a constant function.

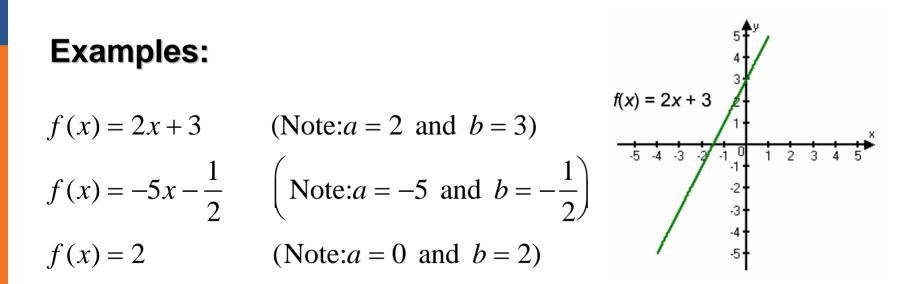


Note: Graph of a constant function is a horizontal line.

Slide 1-26

Linear Function

A function f represented by f(x) = ax + b,
 where a and b are constants, is a linear function.



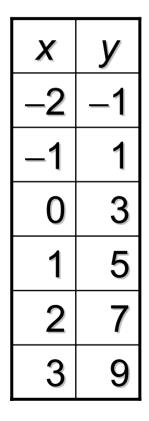
Note that a f(x) = 2 is both a linear function and a constant function. A constant function is a special case of a linear function.

Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 1- 27

Rate of Change of a Linear Function

• Table of values for f(x) = 2x + 3.



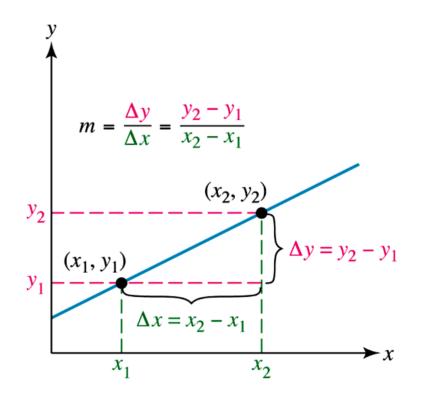
Note throughout the table, as x increases by 1 unit, y increases by 2 units. In other words, the RATE OF CHANGE of y with respect to x is constantly 2 throughout the table. Since the rate of change of y with respect to x is constant, the function is LINEAR. Another name for rate of change of a linear function is SLOPE.

Slope of Line

The slope *m* of the line passing through the points (*x*₁, *y*₁) and (*x*₂, *y*₂) is

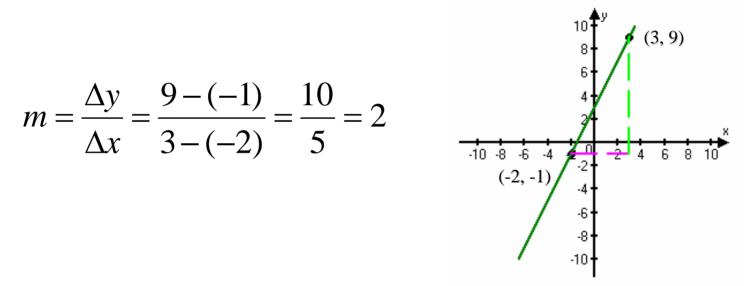
$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

where $x_1 \neq x_2$



Example of Calculation of Slope

 Find the slope of the line passing through the points (-2, -1) and (3, 9).

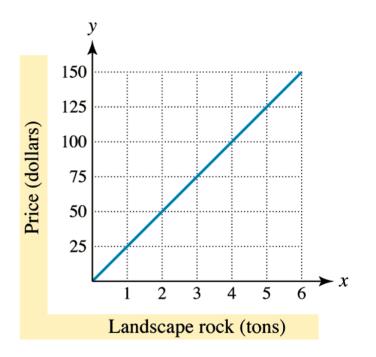


The slope being 2 means that for each unit x increases, the corresponding increase in y is 2. The rate of change of y with respect to x is 2/1 or 2.

Another Example of a Linear Function

 The table and corresponding graph show the price y of x tons of landscape rock.

X (tons)	y (price in dollars)	
1	25	
2	50	
3	75	
4	100	

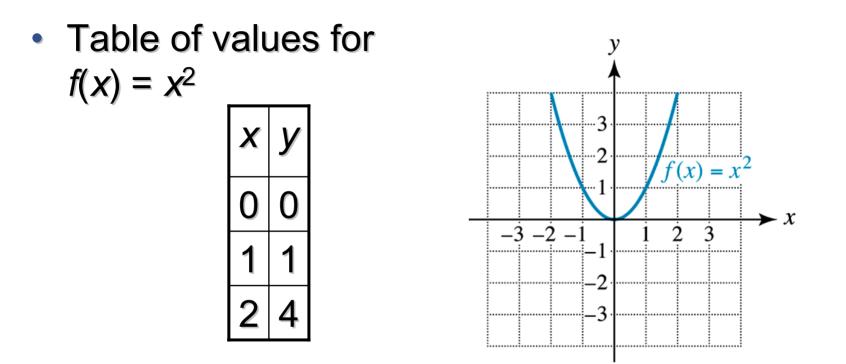


y is a linear function of x and the slope is

 $\frac{\Delta y}{\Delta x} = \frac{50 - 25}{2 - 1} = 25$

The rate of change of price *y* with respect to tonage *x* is 25 to 1. This means that for an increase of 1 ton of rock the price increases by \$25.

Example of a Nonlinear Function



Note that as x increases from 0 to 1, y increases by 1 unit; while as x increases from 1 to 2, y increases by 3 units. 1 does not equal 3. This function does NOT have a CONSTANT RATE OF CHANGE of y with respect to x, so the function is NOT LINEAR. Note that the graph is not a line.

Average Rate of Change

• Let (x_1, y_1) and (x_2, y_2) be distinct points on the graph of a function *f*. The average rate of change of *f* from x_1 to x_2 is $\frac{y_2 - y_1}{x_2 - x_1}$

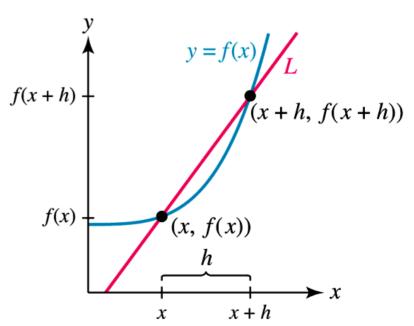
Note that the average rate of change of f from x_1 to x_2 is the slope of the line passing through (x_1, y_1) and (x_2, y_2)

Slide 1- 33

The Difference Quotient

• The difference quotient of a function f is an expression of the form $\frac{f(x+h) - f(x)}{h}$ where h is not 0.

Note that a difference quotient is actually an average rate of change.



Example of Calculating a Difference Quotient

• Let $f(x) = x^2 + 3x$. Find the difference quotient of *f* and simplify the result.

$$\frac{f(x+h) - f(x)}{h} = \frac{(x+h)^2 + 3(x+h) - (x^2 + 3x)}{h} = \frac{(x^2 + 2xh + h^2) + 3x + 3h - x^2 - 3x}{h} = \frac{2xh + h^2 + 3h}{h} = \frac{h(2x+h+3)}{h} = 2x+h+3$$