Using and Understanding Mathematics A Quantitative Reasoning Approach

Jeffrey Bennett William Briggs

Chapter 8

Copyright © 2005 Pearson Education, Inc.

Growth: Linear versus Exponential

Slide 8-3

Growth: Linear versus Exponential

• Linear Growth occurs when a quantity grows by some fixed *absolute* amount in each unit of time.

• Exponential Growth occurs when a quantity grows by the same fixed *relative* amount—that is, by the same percentage—in each unit of time. 8-Δ

Key Facts about Exponential Growth

• Exponential growth leads to repeated doublings. With each doubling, the amount of increase is approximately equal to the sum of all preceding doublings.

• Exponential growth cannot continue indefinitely. After only a relatively small number of doublings, exponentially growing quantities reach impossible proportions. **8-A**

Rule of 70 Approximations

• Doubling Time

For a quantity growing exponentially at a rate of P% per time period, the doubling time is approximately

$$T_{\text{double}} \approx \frac{70}{P}$$

• Half-Life Period

For a quantity growing exponentially at a rate of P% per time period, the doubling time is approximately

$$T_{\text{half-life}} \approx \frac{70}{P}$$

For both doubling and halving, this approximation works best for small growth rates and breaks down for growth rates over about 15%

Exponential Growth vs. Decay

new value = initial value x $2^{t/T_{double}}$

new value = initial value x
$$\left(\frac{1}{2}\right)^{t/T_{half-life}}$$

Exponential Decay

8-B

Exact Doubling Time and Half-Life Formulas

Copyright © 2005 Pearson Education, Inc.

8-B

Exponential versus Logistic Growth

Overall Growth Rate and Logistic Growth Rate

Overall Growth

The world population growth rate is the difference between the birth rate and the death rate:

growth rate = birth rate - death rate

Logistic Growth

The logistic growth rate is dependent upon the ratio of current population to carrying capacity:

growth rate = base rate x (1 – population / carrying capacity)

Overshoot and Collapse

Slide 8-11

Difficulties of Population Prediction

The historical population of Egypt.

SOURCE: T.H. Hollingsworth, *Historical Demography* (Ithaca, NY: Cornell University Press, 1969).

Copyright © 2005 Pearson Education, Inc.

Slide 8-12

Distribution of Earthquakes

The distribution of earthquakes around the world. Each dot represents an earthquake. SOURCE: U.S. Geological Survey

Copyright © 2005 Pearson Education, Inc.

Slide 8-13

Measuring Sound

- The decibel scale is used to compare the loudness of sounds.
- The loudness of a sound in decibels is defined by the following equivalent formulas:

loundness in dB = 10
$$\log_{10} \left(\frac{\text{intensity of the sound}}{\text{intensity of the softest audible count}} \right)$$

or

 $\frac{\text{intensity of the sound}}{\text{intensity of the softest audible sound}} = 10^{\frac{\text{loudenss in dB}}{10}}$

Typical Sounds in Decibels

TABLE 8.5	Typical Sounds in Decibels	
DECIBELS	TIMES LOUDER THAN	EXAMPLE
140	10 ¹⁴	jet at 30 meters
120	10 ¹²	strong risk of damage to human ear
100	10 ¹⁰	siren at 30 meters
90	10 ⁹	threshold of pain for human ear
80	10 ⁸	busy street traffic
60	10 ⁶	ordinary conversation
40	10 ⁴	background noise in average home
20	10 ²	whisper
10	10 ¹	rustle of leaves
0	1	threshold of human hearing
- 10	0.1	inaudible sound

pH Scale

The pH scale is defined by the following equivalent formula:

 $pH = -log_{10}[H^+]$ or $[H^+] = 10^{-pH}$

 where [H⁺] is the hydrogen ion concentration in moles per liter. Pure water is neutral and has a pH of 7. Acids have a pH lower than 7 and bases have a pH higher than 7.

8-D