Using and Understanding Mathematics A Quantitative Reasoning Approach

Jeffrey Bennett William Briggs

Chapter 6

Copyright © 2005 Pearson Education, Inc.

Measures of Center in a Distribution

The **mean** is what we most commonly call the average value. It is defined as follows:

 $mean = \frac{sum of all values}{total number of values}$

The **median** is the middle value in the sorted data set (or halfway between the two middle values if the number of values is even).

The **mode** is the most common value (or group of values) in a distribution.

6-Δ

Middle Value for a Median

<u>6.72</u>	3.46	3.60	6.44	26.70				
3.46	3.60	6.44	6.72	26.70	(sorted list)			
	(odd number of values							
exact middle		median is 6.44						

No Middle Value for a Median

Mode Examples

Symmetric and Skewed Distributions

Copyright © 2005 Pearson Education, Inc.

Slide 6-7

6-A

Why Variation Matters

Big Bank (three line wait times):4.15.25.66.26.77.27.77.78.59.311.0

Best Bank Frequency (number of people) 9 10 11

Waiting time (nearest minute)

Best Bank (one line wait times):6.66.76.76.97.17.27.37.47.77.87.8

Copyright © 2005 Pearson Education, Inc.

Five Number Summaries & Box Plots

Big Bank

- low value (min) = 4.1
 - lower quartile = 5.6
 - median = 7.2
 - upper quartile = 8.5
- high value (max) = 11.0

Best Bank

- low value (min) = 6.6
 - lower quartile = 6.7
 - median = 7.2
 - upper quartile = 7.7
- high value (max) = 7.8

Slide 6-9

6-B

Standard Deviation

Let $A = \{2, 8, 9, 12, 19\}$ with a mean of 10. Use the data set A above to find the sample standard deviation.

<i>x</i> (data value)	x – mean (deviation)	(deviation) ²
2	2 - 10 = -8	$(-8)^2 = 64$
8	8 - 10 = -2	$(-2)^2 = 4$
9	9 - 10 = -1	$(-1)^2 = 1$
12	12 - 10 = 2	$(2)^2 = 4$
19	19 - 10 = 9	$(9)^2 = 81$
	Total	154

standard deviation =
$$\sqrt{\frac{154}{5-1}} = 6.2$$

standard deviaton = $\sqrt{\frac{\text{sum of (deviations from the mean)}^2}{\text{total number of data values} - 1}}$

Copyright © 2005 Pearson Education, Inc.

Slide 6-10

Range Rule of Thumb for Standard Deviation

We can estimate standard deviation by taking an approximate range,

(usual high – usual low), and dividing by 4. The reason for the 4 is due to the idea that the usual high is approximately 2 standard deviations above the mean and the usual low is approximately 2 standard deviations below.

Going in the opposite direction, on the other hand, if we know the standard deviation we can estimate:

low value \approx mean – 2 x standard deviation high value \approx mean + 2 x standard deviation 6-B

Slide 6-14

Also known as the Empirical Rule

Slide 6-16

Z-Score Formula

standard score = $z = \frac{\text{data value} - \text{mean}}{\text{standard deviation}}$

Example:

If the nationwide ACT mean were 21 with a standard deviation of 4.7, find the *z*-score for a 30. What does this mean?

$$z = \frac{30 - 21}{4.7} = 1.91$$

This means that an ACT score of 30 would be about 1.91 standard deviations above the mean of 21.

Standard Scores and Percentiles

TABLE 6.3	Standard So	Standard Scores and Percentiles								
z-score	PERCENTILE	z-score	PERCENTILE	z-score	PERCENTILE	z-score	PERCENTILE			
-3.5	0.02	-1.0	15.87	0.0	50.00	1.1	86.43			
-3.0	0.13	-0.95	17.11	0.05	51.99	1.2	88.49			
-2.9	0.19	-0.90	18.41,	0.10	53.98	1.3	90.32			
-2.8	0.26	-0.85	19.77	0.15	55.96	1.4	91.92			
-2.7	0.35	-0.80	21.19	0.20	57.93	1.5	93.32			
-2.6	0.47	-0.75	22.66	0.25	59.87	1.6	94.52			
-2.5	0.62	-0.70	24.20	0.30	61.79	1.7	95.54			
-2.4	0.82	-0.65	25.78	0.35	63.68	1.8	96.41			
-2.3	1.07	-0.60	27.43	0.40	65.54	1.9	97.13			
-2.2	1.39	-0.55	29.12	0.45	67.36	2.0	97.72			
-2.1	1.79	-0.50	30.85	0.50	69.15	2.1	98.21			
-2.0	2.28	-0.45	32.64	0.55	70.88	2.2	98.61			
-1.9	2.87	-0.40	34.46	0.60	72.57	2.3	98.93			
-1.8	3.59	-0.35	36.32	0.65	74.22	2.4	99.18			
-1.7	4.46	-0.30	38.21	0.70	75.80	2.5	99.38			
-1.6	5.48	-0.25	40.13	0.75	77.34	2.6	99.53			
-1.5	6.68	-0.20	42.07	0.80	78.81	2.7	99.65			
-1.4	8.08	-0.15	44.04	0.85	80.23	2.8	99.74			
-1.3	9.68	-0.10	46.02	0.90	81.59	2.9	99.81			
-1.2	11.51	-0.05	48.01	0.95	82.89	3.0	99.87			
-1.1	13.57	0.0	50.00	1.0	84.13	3.5	99.98			

Copyright © 2005 Pearson Education, Inc.

Inferential Statistics Definitions

- A set of measurements or observations in a statistical study is said to be **statistically significant** if it is unlikely to have occurred by chance.
- 0.05 (1 out of 20) or 0.01 (1 out of 100) are two very common **levels of significance** that indicate the probability that an observed difference is simply due to chance.
- At the level of 95% confidence we can estimate the **margin of error** that a sample of size *n* is different from the actual population measurement (parameter) by calculating:

margin of error
$$\approx \frac{1}{\sqrt{n}}$$

• The **null hypothesis** claims a specific value for a population parameter null hypothesis: population parameter = claimed value

• The **alternative hypothesis** is the claim that is accepted if the null hypothesis is rejected.

Outcomes of a Hypothesis Test

- Rejecting the null hypothesis, in which case we have evidence that supports the alternative hypothesis.
- Not rejecting the null hypothesis, in which case we lack sufficient evidence to support the alternative hypothesis.