Discrete Probability Distributions

MATH 1342 Elementary Statistics

Why Study Probability?

- Probability helps us make informed decisions in a variety of areas.
 - Finance: does an investment have a chance of making a profit?
 - Law: does a pool of jurors represent a fair cross-section of Americans?
 - Medicine: does a vaccine help more people than hurt?

Why Be Discrete?

- A *discrete* quantity is usually represented by a whole number (0,1,2, etc.). Discrete data usually does not use fractions or decimals.
- In the last slide, the variables in question are a discrete quantities.
 - How much should invest? \$100, \$200, or more?
 - How many people of one demographic were on the jury panel?
 3,4, or more?
 - How many people were injured by a vaccine? 5,6, or more?

Probability Distributions

- A discrete probability distribution table lists
 - all possible values for a discrete random variable X; and
 - corresponding probabilities **P(x)** for each value

Application: Return on Investment

- How much return on investment (profit or loss) can we expect from:
 - Life Insurance
 - Stocks, Bonds
 - Lotteries & other games of chance

Important Computations

- Know how to verify if a table of probabilities is a discrete probability distribution
 - $\Sigma P(x) = 1$ and $0 \le P(x) \le 1$
- Know how to compute the mean μ and standard deviation σ of discrete probability distribution
 - Use the TI calculator:
 [STAT] [Calc] 1-Var Stats L1, L2

Applied Solution Strategies

- Organize your possible earnings and corresponding probabilities into a probability distribution table
- Compute the mean value (aka expected value) to see how much you can expect to earn or lose on a given investment
- On games of chance, the expected value is always negative (i.e., we should expect to lose \$\$)

Binomial Probability

- A very common type of discrete probability used in a variety of applications throughout the remainder of this course
- Does the jury panel have too many or too few members of a certain demographic?

Binomial Vocabulary

- A binomial experiment or event is called a *trial*. Flipping a coin is the classic binomial trial.
- Each trial is *independent* of other trials. One flip of the coin does not affect another.
- Each trial has 2 *mutually exclusive* outcomes. The coin will land heads or tails, but not both!
- The probability of each outcome remains constant.

More Binomial Vocabulary

- Binomial probability distributions have a finite number of trials, called *n*. If we flip a coin 20 times, then *n* = 20
- The number of times a trial has a desired outcome (e.g. tails) is represented by x. Note that x < n
- The probability of a trial having a desired outcome (e.g. tails) is represented by p
- The probability of a trial having the opposite outcome (e.g. heads) is represented by **1-p** or **q**

Computing Binomial Probability

- Use the TI calculator: 2nd [DISTR] binompdf(n,p,x)
- The TI calculator **binomcdf** is a useful shortcut for *cumulative* probability (automatically adding up all probabilities up to a specified *x*-value)
- Microsoft Excel has similar features under the BINOMDIST function

Algebra is Really Cool

 Through use of college algebra, we can derive two remarkable shortcut formulas for the mean and standard deviation of a binomial distribution

$$\mu = np$$
 and $\sigma = \sqrt{np(1-p)}$

The longer formulas for mean and standard deviation are not necessary with binomial problems

Binomial is the New Normal

- A very interesting pattern emerges if we express a binomial probability distribution as a histogram
- As the number of trials *n* grows larger, the histogram becomes follows a *normal* or bell-shaped pattern (as guaranteed by the Central Limit Theorem)
- About 95% of a binomial distribution falls between μ-2σ and μ+2σ. Anything outside this range is considered an unusually small or large result.

Binomial Application

 In a certain Texas county, the population was 79.1% Hispanic. The county jury pool of 870 potential jurors was supposed to be selected at random. Only 339 potential jurors were Hispanic. Do these numbers show evidence of discrimination? (from *Castaneda v. Partida*, a 1977 Supreme Court case)

Common Mistakes to Avoid

- For binomial problems, make sure the total sample size *n* is not more than 5-10% of the total population. If not, one trial may not be independent of the next trial.
- For binomial problems, make sure x and p measure the same event or quantity
- Know how to translate spoken language into Math: e.g. *no more than* → ≤ or *at least* → ≥

Poisson Distribution

- Useful to measure probability over an interval of time
 - What is the probability of a certain number of people entering a queue (e.g. at grocery store, drive-thru)?
 - What is the probability that a vaccine may cause fatalities over a specified interval of time?
- Useful way to approximate the binomial probability without the aid of an advanced calculator for experiments with very large n ≥ 100.

Computing Poisson Probability

- Use the TI calculator: 2nd [DISTR] poissonpdf(µ,x)
 - An optional poissoncdf(µ,x) is available on the TI for cumulative probability.
 - Microsoft Excel has a similar POISSON function
- Note that Poisson probability does not depend on knowing an *n* or a *p* as with binomial probability.
- You only need to compute μ , the average number times the event occurs in the given interval.

Summary: Know How to ...

- Compute expected value for a probability distribution table
- Compute a binomial probability
- Compute the mean and standard deviation of a binomial probability
- Recognize discrete data vs. non-discrete or continuous data, which will be discussed in the next chapter