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Section 8-1 & 8-2 
Overview and Inferences 
about Two Proportions
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Overview (p.438)

There are many important and meaningful 
situations in which it becomes necessary 

to compare two sets of sample data.
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Inferences about 
Two Proportions

Assumptions (p.439)
1.  We have proportions from two 

independent simple random samples.

2.  For both samples, the conditions np ≥ 5 
and nq ≥ 5 are satisfied.
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population 2.

Corresponding meanings are attached
to p

2
, n

2
, x

2
, p

2
. and q

2
, which come from^^

For population 1, we let:
p

1
= population proportion

n1 = size of the sample
x1 = number of successes in the sample
p

1
= x1 (the sample proportion)

q
1

= 1 – p
1̂

^
n1

^

Notation for 
Two Proportions
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The pooled estimate of p
1 
and p

2 

is denoted by p.

Pooled Estimate of 
p

1 
and p

2

q = 1 – p

=p n
1  

+ n
2

x
1  

+ x
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Test Statistic for 
Two Proportions (p.441) 

where p
1 

– p 
2

= 0     (assumed in the null hypothesis)

=p
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Test Statistic for 
Two Proportions (p.441) 

For  H0: p1 
= p

2 
,   H0: p1 

= p
2

,    H0: p1
= p

2

H1: p1 
≠ p

2 
,    H1: p1 
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> p
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Example: For the sample data listed in 
Table 8-1, use a 0.05 significance level to test 
the claim that the proportion of black drivers stopped by 
the police is greater than the proportion of white drivers 
who are stopped. (p.441) 
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Example: For the sample data listed in 
Table 8-1, use a 0.05 significance level to test 
the claim that the proportion of black drivers stopped by 
the police is greater than the proportion of white drivers 
who are stopped.  

200n1

n1= 200

x1 = 24

p1 = x1 = 24 = 0.120^

n2

n2 = 1400
x2 = 147
p2 = x2 = 147 = 0.105

1400
^

H0: p1 = p2, H1: p1 > p2

p = x1 + x2 = 24 + 147 = 0.106875
n1 + n2 200+1400

q = 1 – 0.106875 = 0.893125.
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Example: For the sample data listed in 
Table 8-1, use a 0.05 significance level to test 
the claim that the proportion of black drivers stopped by 
the police is greater than the proportion of white drivers 
who are stopped.  

200n1

n1= 200

x1 = 24

p1 = x1 = 24 = 0.120^

n2

n2 = 1400
x2 = 147
p2 = x2 = 147 = 0.105

1400
^

z =                             (0.120 – 0.105) – 0
(0.106875)(0.893125) + (0.106875)(0.893125)

200                                1400

z = 0.64
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n1= 200

x1 = 24

p1 = x1 = 24 = 0.120
n1 200

^

n2 = 1400
x2 = 147
p2 = x2 = 147 = 0.105

n2 1400
^

(0.120 – 0.105) – 0.040 < ( p1– p2) < (0.120 – 0.105) + 0.040 
–0.025 < ( p1– p2)  < 0.055

Example: For the sample data listed in 
Table 8-1, use a 0.05 significance level to test 
the claim that the proportion of black drivers stopped by 
the police is greater than the proportion of white drivers 
who are stopped.  
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Example: For the sample data listed in 
Table 8-1, use a 0.05 significance level to test 
the claim that the proportion of black drivers stopped by 
the police is greater than the proportion of white drivers 
who are stopped.  

200n1

n1= 200

x1 = 24

p1 = x1 = 24 = 0.120^

n2

n2 = 1400
x2 = 147
p2 = x2 = 147 = 0.105

1400
^
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Example: For the sample data listed in 
Table 8-1, use a 0.05 significance level to test 
the claim that the proportion of black drivers stopped by 
the police is greater than the proportion of white drivers 
who are stopped.  

200n1

n1= 200

x1 = 24

p1 = x1 = 24 = 0.120^

n2

n2 = 1400
x2 = 147
p2 = x2 = 147 = 0.105

1400
^

z = 0.64
This is a right-tailed test, so the P-
value is
the area to the right of the test statistic 
z = 0.64.  The P-value is 0.2611.
Because the P-value of 0.2611 is 
greater than the significance level of α
= 0.05, we fail to reject the null 
hypothesis.
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Example: For the sample data listed in 
Table 8-1, use a 0.05 significance level to test 
the claim that the proportion of black drivers stopped by 
the police is greater than the proportion of white drivers 
who are stopped.  

200n1

n1= 200

x1 = 24

p1 = x1 = 24 = 0.120^

n2

n2 = 1400
x2 = 147
p2 = x2 = 147 = 0.105

1400
^

z = 0.64
Because we fail to reject the null 
hypothesis, we conclude that there is not 
sufficient evidence to support the claim 
that the proportion of black drivers 
stopped by police is greater than that for 
white drivers. This does not mean that 
racial profiling has been disproved.  The 
evidence might be strong enough with 
more data.
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n1 n2

p
1

q
1 p

2 
q

2+
^ ^^ ^

where E = zα/2

Confidence Interval 
Estimate of p

1 
- p

2

( p
1  

– p
2 
) – E <  ( p

1 
– p

2
)  <  ( p

1 
– p

2 
) + E^ ^ ^^
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Example: For the sample data listed in 
Table 8-1, find a 90% confidence interval estimate of the 
difference between the two population proportions. 
(p.444)  

n1= 200

x1 = 24

p1 = x1 = 24 = 0.120
n1 200

^

n2 = 1400
x2 = 147
p2 = x2 = 147 = 0.105

n2 1400
^

n1 n2
+

p
1

q
1 p

2 
q

2
^ ^^ ^

E = zα/2

E = 1.645
200 1400

(.12)(.88)+(0.105)(0.895)

E = 0.400
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Section 8-3 
Inferences about Two 
Means: Independent 

Samples
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Definitions

Two Samples: Independent
The sample values selected from one 
population are not related or somehow paired 
with the sample values selected from the 
other population.  

If the values in one sample are related to the 
values in the other sample, the samples are 
dependent.  Such samples are often referred 
to as matched pairs or paired samples. 



Slide 20

Chapter 8, Triola, Elementary Statistics, MATH 1342

Assumptions (p.453)

1.  The two samples are independent.

2.  Both samples are simple random 
samples. 

3. Either or both of these conditions are 
satisfied: The two sample sizes are both 
large (with n1 > 30 and n2 > 30) or both 
samples come from populations having 
normal distributions.
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(x1 – x2) – (µ1 – µ2)t =

n1 n2
+s1

. s2
22

Hypothesis Tests
Test Statistic for Two Means:
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Degrees of freedom: In this book we use this estimate: df = 
smaller of n1 – 1 and n2 – 1.

P-value: Refer to Table A-3.  Use the procedure 
summarized in Figure 7-6.

Critical values: Refer to Table A-3.  

Hypothesis Tests
Test Statistic for Two Means:



Slide 23

Chapter 8, Triola, Elementary Statistics, MATH 1342

McGwire Versus Bonds (p.455)

Data Set 30 in Appendix B includes the distances 
of the home runs hit in record-setting seasons by 
Mark McGwire and Barry Bonds.  Sample 
statistics are shown.  Use a 0.05 significance 
level to test the claim that the distances come 
from populations with different means.

McGwire Bonds

n 70 73

x 418.5  403.7

s 45.5 30.6
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McGwire Versus Bonds
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Claim: μ1 ≠ μ2

Ho : μ1 = μ2

H1 : μ1 ≠ μ2

α = 0.05

n1 – 1 = 69
n2 – 1 = 72
df = 69
t.025 = 1.994

McGwire Versus Bonds
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Test Statistic for Two Means:

(x1 – x2) – (µ1 – µ2)t =

n1 n2
+

s1
. s2

22

McGwire Versus Bonds
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Test Statistic for Two Means: 

(418.5 – 403.7) – 0t =

70
+45.52 30.62

73

= 2.273

McGwire Versus Bonds
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Figure 8-2

McGwire Versus Bonds
Claim: μ1 ≠ μ2

Ho : μ1 = μ2

H1 : μ1 ≠ μ2

α = 0.05
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Figure 8-2

Claim: μ1 ≠ μ2

Ho : μ1 = μ2

H1 : μ1 ≠ μ2

α = 0.05

There is significant evidence to support the 
claim that there is a difference between the 
mean home run distances of Mark McGwire
and Barry Bonds.

Reject Null

McGwire Versus Bonds
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Confidence Intervals

(x1 – x2) – E <  (µ1 – µ2)  <  (x1 – x2) + E

+n1 n2

s1 s2where E =  tα/2

22
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Using the sample data given in the preceding 
example, construct a 95%confidence interval 
estimate of the difference between the mean 
home run distances of Mark McGwire and Barry 
Bonds.

n1 n2
+s1 s2E =  tα/2

22

E = 1.994
70 73

+45.5 30.622

E = 13.0

McGwire Versus Bonds (p.457)
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Using the sample data given in the preceding 
example, construct a 95%confidence interval 
estimate of the difference between the mean 
home run distances of Mark McGwire and Barry 
Bonds.

(418.5 – 403.7) – 13.0 < (μ1 – μ2) < (418.5 – 403.7) + 13.0
1.8 < (μ1 – μ2) < 27.8

We are 95% confident that the limits of 1.8 ft and 27.8 ft 
actually do contain the difference between the two 
population means.

McGwire Versus Bonds
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Section 8-4 
Inferences from Matched 

Pairs
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Assumptions (p.467)
1.  The sample data consist of matched pairs.

2.  The samples are simple random samples. 

3. Either or both of these conditions is 
satisfied:  The number of matched pairs of 
sample data is (n > 30) or the pairs of values 
have differences that are from a population 
having a distribution that is approximately 
normal.
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sd =  standard deviation of the differences d
for  the paired sample data

n =  number of pairs of data.

µd =  mean value of the differences d for the 
population of paired data

d =  mean value of the differences d for the 
paired sample data (equal to the mean  
of the x – y values)

Notation for 
Matched Pairs
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t = d – µd
sd

n

where degrees of freedom =  n – 1

Test Statistic for Matched 
Pairs of Sample Data (p.467)
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P-values and 
Critical Values

Use Table A-3 (t-distribution) on 
p.736.
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Confidence Intervals

degrees of freedom = n –1

where E = tα/2 sd
n

d – E < µd < d + E
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Are Forecast 
Temperatures Accurate?

Using Table A-2 consists of five actual low 
temperatures and the corresponding low 
temperatures that were predicted five days 
earlier.  The data consist of matched pairs, 
because each pair of values represents 
the same day.  Use a 0.05 significant level 
to test the claim that there is a difference 
between the actual low temperatures and 
the low temperatures that were forecast 
five days earlier. (p.468)
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Are Forecast 
Temperatures Accurate?
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d = –13.2
s = 10.7
n = 5
tα/2 = 2.776 (found from Table A-3 with 4 

degrees of freedom and 0.05 in two tails)

Are Forecast 
Temperatures Accurate?



Slide 42

Chapter 8, Triola, Elementary Statistics, MATH 1342

H0: μd = 0
H1: μd ≠ 0 t =

d – µd

n
sd

= –13.2 – 0 = –2.759
10.7
5

Are Forecast 
Temperatures Accurate?
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H0: μd = 0
H1: μd ≠ 0 t =

d – µd

n
sd

= –13.2 – 0 = –2.759
10.7
5

Are Forecast 
Temperatures Accurate?

Because the test statistic does not fall in the 
critical region, we fail to reject the null 
hypothesis.
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H0: μd = 0
H1: μd ≠ 0 t =

d – µd

n
sd

= –13.2 – 0 = –2.759
10.7
5

Are Forecast 
Temperatures Accurate?

The sample data in Table 8-2 do not provide 
sufficient evidence to support the claim that 
actual and five-day forecast low temperatures 
are different.
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Are Forecast 
Temperatures Accurate? (p.469)
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Using the same sample matched pairs 
in Table 8-2, construct a 95% 
confidence interval estimate of μd, 
which is the mean of the differences 
between actual low temperatures and 
five-day forecasts.

Are Forecast 
Temperatures Accurate? (p.470)
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E = tα/2 sd
n

E = (2.776)(     )10.7

5

= 13.3

Are Forecast 
Temperatures Accurate?
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d – E < μd < d + E
–13.2 – 13.3 < μd < –13.2 + 13.3

–26.5 < μd < 0.1

Are Forecast 
Temperatures Accurate?
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In the long run, 95% of such samples 
will lead to confidence intervals that 
actually do contain the true 
population mean of the differences.

Are Forecast 
Temperatures Accurate? (p.470)
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Section 8-5 
Comparing Variation in 

Two Samples
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Measures of Variation (p.476)

 s = standard deviation of sample

 σ = standard deviation of population

 s2 = variance of sample

 σ2 = variance of population
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Assumptions

1. The two populations are 
independent of each other.
2. The two populations are each 
normally distributed.
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Notation for Hypothesis 
Tests with Two Variances

s1 = larger of the two sample variances

n1 = size of the sample with the larger 
variance

σ1 = variance of the population from which 
the sample with the larger variance was 
drawn

The symbols s2 , n2 , and σ2 are used for the 
other sample and population.

2

2

2 2
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Critical Values: Using Table A-5, we obtain 
critical F values that are determined by the 
following three values: 

s1F = s2

2

2

1. The significance level α. 
2. Numerator degrees of freedom (df1) = n1 – 1
3. Denominator degrees of freedom (df2) = n2 – 1

Test Statistic for Hypothesis 
Tests with Two Variances
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All one-tailed tests will be right-tailed.

All two-tailed tests will need only the   
critical value to the right.

When degrees of freedom is not listed 
exactly, use the critical values on 
either side as an interval.  Use 
interpolation only if the test statistic 
falls within the interval.
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If the two populations do have equal 
variances, then F=      will be close to 
1 because      and      are close in 
value. (p.478)

s1 s2 2
2

s1
s2

2

2
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If the two populations have radically 
different variances, then F will be a 
large number.  
Remember, the larger sample variance will be s1 .2
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Consequently, a value of F near 1 
will be evidence in favor of the 
conclusion that  σ1 = σ2 .2 2

But a large value of F will be 
evidence against the conclusion 
of equality of the population 
variances. 
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Data Set 17 in Appendix B includes the weights 
(in pounds) of samples of regular Coke and 
regular Pepsi.  Sample statistics are shown. Use 
the 0.05 significance level to test the claim that 
the weights of regular Coke and the weights of 
regular Pepsi have the same standard deviation.

Regular Coke Regular Pepsi

n 36 36

x 0.81682 0.82410

s 0.007507 0.005701

Coke Versus Pepsi (p.480)
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Claim: σ1 = σ2

Ho : σ1 = σ2

H1 : σ1 ≠ σ2

α = 0.05

2 2

2 2

2 2

Value of F = 
s1

s2

Coke Versus Pepsi

2

2

0.005701 2
0.007507 2=

=  1.7339
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Claim: σ1 = σ2

Ho : σ1 = σ2

H1 : σ1 ≠ σ2

α = 0.05

2 2

2 2

2 2

Coke Versus Pepsi

There is not sufficient evidence to warrant rejection 
of the claim that the two variances are equal. 
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