Chapter 9 Slide 1

9-1 Overview

9-2 Correlation

9-3 Regression

9-4 Variation and Prediction Intervals

9-5 Multiple Regression

9-6 Modeling

Section 9-1 & 9-2 Overview and Correlation and Regression

Created by Erin Hodgess, Houston, Texas

Paired Data (p.506)

Is there a relationship?

If so, what is the equation?

Use that equation for prediction.

Definition

A correlation exists between two variables when one of them is related to the other in some way.

Definition

A Scatterplot (or scatter) diagram) is a graph in which the paired (x, y) sample data are plotted with a horizontal x-axis and a vertical y-axis. Each individual (x, y) pair is plotted as a single point.

Scatter Diagram of Paired Data (p.507)

Chapter 9, Triola, Elementary Statistics, MATH 1342

Positive Linear Correlation (p.498)

(a) Positive correlation between *x* and *y*

(**b**) Strong positive correlation between *x* and *y*

(c) Perfect positive correlation between *x* and *y*

Figure 9-2 Scatter Plots

Negative Linear Correlation

(d) Negative correlation between x and y

(e) Strong negative correlation between *x* and *y*

(f) Perfect negative correlation between *x* and *y*

Figure 9-2 Scatter Plots

No Linear Correlation

(g) No correlation between x and y

(h) Nonlinear relationship between *x* and *y*

Slide 9

Figure 9-2 Scatter Plots

Definition (p.509)

The linear correlation coefficient *r* measures strength of the linear relationship between paired *x* and *y* values in a sample.

- 1. The sample of paired data (*x*, *y*) is a random sample.
- 2. The pairs of (*x*, *y*) data have a bivariate normal distribution.

Notation for the Linear Correlation Coefficient

- n = number of pairs of data presented
- Σ denotes the addition of the items indicated.
- Σx denotes the sum of all *x*-values.
- Σx^2 indicates that each *x*-value should be squared and then those squares added.
- $(\Sigma x)^2$ indicates that the *x*-values should be added and the total then squared.
- Σxy indicates that each x-value should be first multiplied by its corresponding y-value. After obtaining all such products, find their sum.
- *r* represents linear correlation coefficient for a <u>sample</u>
- ρ represents linear correlation coefficient for a <u>population</u>

Definition

The linear correlation coefficient *r* measures the strength of a linear relationship between the paired values in a sample.

$$r = \frac{n\Sigma xy - (\Sigma x)(\Sigma y)}{\sqrt{n(\Sigma x^2) - (\Sigma x)^2}\sqrt{n(\Sigma y^2) - (\Sigma y)^2}}$$

Formula 9-1

Calculators can compute r

ρ (rho) is the linear correlation coefficient for <u>all</u> paired data in the population.

Rounding the Linear Correlation Coefficient r

Round to three decimal places so that it can be compared to critical values in Table A-6. (see p.510)

Use calculator or computer if possible.

Calculating r

Data

<i>x</i>	1	1	3	5	
у	2	8	6	4	

This data is from exercise #7 on p.521.

Calculating r

Table 9-2	-2 Finding Statistics Used to Calculate <i>r</i>								
	x	У	x·y	<i>x</i> ²	y ²				
	1	2	2	1	4				
	1	8	8	1	64				
	3	6	18	9	36				
	5	4	20	25	16				
Total	10 ↑ Σ <i>x</i>	20 ↑ Σ <i>y</i>	48 ↑ Σ <i>xy</i>	36 ↑ Σ <i>x</i> ²	120 ↑ Σy²				

Calculating r

Data 1 3 5 x 2 8 6 4 y $n\Sigma xy - (\Sigma x)(\Sigma y)$ r = $\sqrt{n(\Sigma x^2) - (\Sigma x)^2} \sqrt{n(\Sigma y^2) - (\Sigma y)^2}$ 4(48) - (10)(20)r = $\sqrt{4(36) - (10)^2} \sqrt{4(120) - (20)^2}$ = -0.13559.329

Interpreting the Linear Slide 18 Correlation Coefficient (p.511)

If the absolute value of r exceeds the value in Table A - 6, conclude that there is a significant linear correlation.

Otherwise, there is not sufficient evidence to support the conclusion of significant linear correlation.

Example: Boats and Manatees

Given the sample data in Table 9-1, find the value of the linear correlation coefficient r, then refer to Table A-6 to determine whether there is a significant linear correlation between the number of registered boats and the number of manatees killed by boats.

Using the same procedure previously illustrated, we find that r = 0.922.

Referring to Table A-6, we locate the row for which n=10. Using the critical value for $\alpha=5$, we have 0.632. Because r = 0.922, its absolute value exceeds 0.632, so we conclude that there is a significant linear correlation between number of registered boats and number of manatee deaths from boats.

- 1. $-1 \le r \le 1$ (see also p.512)
- 2. Value of *r* does not change if all values of either variable are converted to a different scale.
- 3. The *r* is not affected by the choice of *x* and *y*. interchange *x* and *y* and the value of *r* will not change.
- 4. *r* measures strength of a linear relationship.

Interpreting *r*: Explained Variation

The value of r^2 is the proportion of the variation in y that is explained by the linear relationship between x and y. (p.503 and p.533)

Example: Boats and Manatees

Using the boat/manatee data in Table 9-1, we have found that the value of the linear correlation coefficient r = 0.922. What proportion of the variation of the manatee deaths can be explained by the variation in the number of boat registrations?

With r = 0.922, we get $r^2 = 0.850$.

We conclude that 0.850 (or about 85%) of the variation in manatee deaths can be explained by the linear relationship between the number of boat registrations and the number of manatee deaths from boats. This implies that 15% of the variation of manatee deaths cannot be explained by the number of boat registrations.

Common Errors Involving Correlation (pp.503-504)

- 1. Causation: It is wrong to conclude that correlation implies causality.
- 2. Averages: Averages suppress individual variation and may inflate the correlation coefficient.
- 3. Linearity: There may be <u>some relationship</u> between x and y even when there is no significant linear correlation.

Common Errors Involving Correlation

FIGURE 9-3

Scatterplot of Distance above Ground and Time for Object Thrown Upward

Formal Hypothesis Test (p.504)

We wish to determine whether there is a significant linear correlation between two variables.

We present two methods.

***Both methods let** H_0 : $\rho = 0$ (no significant linear correlation) H_1 : $\rho \neq 0$ (significant linear correlation)

Chapter 9, Triola, Elementary Statistics, MATH 1342

Method 1: Test Statistic is *t* (follows format of earlier chapters)

Test statistic:

$$t = \frac{r}{\sqrt{\frac{1-r^2}{n-2}}}$$

Critical values:

Use Table A-3 with degrees of freedom = n - 2

Method 2: Test Statistic is r (uses fewer calculations)

Test statistic: r

Critical values: Refer to Table A-6 (no degrees of freedom)

Example: Boats and Manatees

Using the boat/manatee data in Table 9-1, test the claim that there is a linear correlation between the number of registered boats and the number of manatee deaths from boats. Use Method 1.

TA

$$t = \frac{1}{\sqrt{\frac{1-r^2}{n-2}}}$$
$$t = \frac{0.922}{\sqrt{\frac{1-0.922}{10-2}^2}} = 6.735$$

Method 1: <u>Slide 30</u> Test Statistic is *t* (follows format of earlier chapters)

Chapter 9, Triola, Elementary Statistics, MATH 1342

Example: Boats and Manatees

Using the boat/manatee data in Table 9-1, test the claim that there is a linear correlation between the number of registered boats and the number of manatee deaths from boats. Use Method 2.

The test statistic is r = 0.922. The critical values of $r = \pm 0.632$ are found in Table A-6 with n = 10 and $\alpha = 0.05$.

Method 2: Test Statistic is r (uses fewer calculations)

Test statistic: r

Critical values: Refer to Table A-6 (10 degrees of freedom)

Example: Boats and Manatees

Using the boat/manatee data in Table 9-1, test the claim that there is a linear correlation between the number of registered boats and the number of manatee deaths from boats. Use both (a) Method 1 and (b) Method 2.

Using either of the two methods, we find that the absolute value of the test statistic does exceed the critical value (Method 1: 6.735 > 2.306. Method 2: 0.922 > 0.632); that is, the test statistic falls in the critical region.

We therefore reject the null hypothesis. There is sufficient evidence to support the claim of a linear correlation between the number of registered boats and the number of manatee deaths from boats.

Justification for r Formula

Formula 9-1 is developed from

Chapter 9, Triola, *Elementary Statistics*, MATH 1342

Created by Erin Hodgess, Houston, Texas

Regression

Definition

Regression Equation

The regression equation expresses a relationship between x (called the independent variable, predictor variable or explanatory variable, and y (called the dependent variable or response variable.

The typical equation of a straight line y = mx + b is expressed in the form $y = b_0 + b_1 x$, where b_0 is the yintercept and b_1 is the slope.
Assumptions

- 1. We are investigating only linear relationships.
- 2. For each x-value, y is a random variable having a normal (bell-shaped) distribution. All of these y distributions have the same variance. Also, for a given value of x, the distribution of y-values has a mean that lies on the regression line. (Results are not seriously affected if departures from normal distributions and equal variances are not too extreme.)

Regression

Definition

Regression Equation

Given a collection of paired data, the regression equation

$$\hat{y} = b_0 + b_1 x$$

algebraically describes the relationship between the two variables

Regression Line The graph of the regression equation is called the regression line (or line of best fit, or least squares line).

Notation for Regression Equation

	Population Parameter	<u>Sample</u> <u>Statistic</u>
y-intercept of regression equation	eta_{0}	b ₀
Slope of regression equation	β_1	b ₁
Equation of the regression line	$y = \beta_0 + \beta_1 x$	$\hat{y} = b_0 + b_1 \mathbf{X}$

Formula 9-2
$$b_1 = \frac{n(\Sigma xy) - (\Sigma x)(\Sigma y)}{n(\Sigma x^2) - (\Sigma x)^2}$$
 (slope)

Formula 9-3
$$b_0 = \overline{y} - b_1 \overline{x}$$
 (y-intercept)

calculators or computers can compute these values

$$b_0 = \bar{y} - b_1 \bar{x}$$

Formula 9-4

Can be used for Formula 9-2, where \overline{y} is the mean of the y-values and \overline{x} is the mean of the x values

The regression line fits the sample points best.

Rounding the y-intercept b_0 and the slope b_1

If you use the formulas 9-2 and 9-3, try not to round intermediate values. (see p.527)

	Slide 44				
Data				-	
x	1	1	3	5	
у	2	8	6	4	

In Section 9-2, we used these values to find that the linear correlation coefficient of r = -0.135. Use this sample to find the regression equation.

Chapter 9, Triola, Elementary Statistics, MATH 1342

Calculating the Regression Equation

Data

x	1	1	3	5	
у	2	8	6	4	

n=4 $\Sigma x = 10$ $\Sigma y = 20$ $\Sigma x^2 = 36$

 $b_0 = \overline{y} - b_1 \overline{x}$ 5 - (-0.181818)(2.5) = 5.45 $\Sigma y^2 = 120$

 $\Sigma xy = 48$

Calculating the
Regression EquationSlide 47Datax1135y2864

n = 4The estimated equation of the regression line is: $\Sigma x = 10$ $\widehat{\Sigma} y = 20$ $\Sigma y = 20$ $\widehat{Y} = 5.45 - 0.182x$ $\Sigma y^2 = 120$ $\Sigma xy = 48$

Given the sample data in Table 9-1, find the regression equation. (from pp.507-508)

Using the same procedure as in the previous example, we find that $b_1 = 2.27$ and $b_0 = -113$. Hence, the estimated regression equation is:

$$\hat{y} = -113 + 2.27x$$

Given the sample data in Table 9-1, find the regression equation.

Predictions

In predicting a value of y based on some given value of x ...

- 1. If there is not a significant linear correlation, the best predicted y-value is \overline{y} .
- 2. If there is a significant linear correlation, the best predicted *y*-value is found by substituting the *x*-value into the regression equation.

(p.522)

We must consider whether there is a linear correlation that justifies the use of that equation. We do have a significant linear correlation (with r = 0.922).

Given the sample data in Table 9-1, we found that the regression equation is \$ = -113 + 2.27x. Given that x = 85, find the best predicted value of y, the number of manatee deaths from boats.

$$\hat{y} = -113 + 2.27x \\ -113 + 2.27(85) = 80.0$$

The predicted number of manatee deaths is 80.0. The actual number of manatee deaths in 2001 was 82, so the predicted value of 80.0 is quite close.

Guidelines for Using The Regression Equation (p.523)

- 1. If there is no significant linear correlation, don't use the regression equation to make predictions.
- 2. When using the regression equation for predictions, stay within the scope of the available sample data.
- 3. A regression equation based on old data is not necessarily valid now.
- 4. Don't make predictions about a population that is different from the population from which the sample data was drawn.

- Marginal Change: The marginal change is the amount that a variable changes when the other variable changes by exactly one unit.
- Outlier: An outlier is a point lying far away from the other data points.
- Influential Points: An influential point strongly affects the graph of the regression line.

Residuals and the Slide 57 Least-Squares Property Definitions (p.525)

Residual

for a sample of paired (x, y) data, the difference (y - y)between an observed sample y-value and the value of y, which is the value of y that is predicted by using the regression equation.

Least-Squares Property

A straight line satisfies this property if the sum of the squares of the residuals is the smallest sum possible.

Residuals and the Least-Squares Property

Chapter 9, Triola, Elementary Statistics, MATH 1342

Section 9-4 Variation and Prediction Intervals

Created by Erin Hodgess, Houston, Texas

We consider different types of variation that can be used for two major applications:

1. To determine the proportion of the variation in y that can be explained by the linear relationship between x and y.

2. To construct interval estimates of predicted *y*-values. Such intervals are called prediction intervals.

Total Deviation The total deviation from the mean of the particular point (x, y) is the vertical distance $y - \overline{y}$, which is the distance between the point (x, y) and the horizontal line passing through the sample mean \overline{y} .

Explained Deviation is

the vertical distance $\hat{y} - \overline{y}$, which is the distance between the predicted *y*-value and the horizontal line passing through the sample mean \overline{y} .

Unexplained Deviation is

the vertical distance $y - \hat{y}$, which is the vertical distance between the point (x, y) and the regression line. (The distance $y - \hat{y}$ is also called a *residual*, as defined in Section 9-3.).

Figure 9-10 Unexplained, Explained, and Total Deviation

(total deviation) = (explained deviation) + (unexplained deviation)

$$(y - \overline{y}) = (\hat{y} - \overline{y}) + (y - \hat{y})$$

(total variation) = (explained variation) + (unexplained variation)

$$\Sigma (y - \overline{y})^2 = \Sigma (\hat{y} - \overline{y})^2 + \Sigma (y - \hat{y})^2$$

Formula 9-4

Coefficient of determination the amount of the variation in y that is explained by the regression line

= explained variation.

total variation

or

simply square *r* (determined by Formula 9-1, section 9-2)

Prediction Intervals

Definition

The standard error of estimate is a measure of the differences (or distances) between the observed sample y values and the predicted values \hat{y} that are obtained using the regression equation.

5

$$\frac{\sum y^2 - b_0 \sum y - b_1 \sum xy}{n - 2}$$
 Formula 9-

Given the sample data in Table 9-1, we found that the regression equation is $\hat{y} = -113 + 2.27x$. Find the standard error of estimate s_e for the boat/manatee data.

Given the sample data in Table 9-1, we found that the regression equation is $\hat{y} = -113 + 2.27x$. Find the standard error of estimate s_e for the boat/manatee data.

n = 10 $\Sigma y^2 = 33456$ $\Sigma y = 558$ $\Sigma xy = 42214$ $b_0 = -112.70989$ $b_1 = 2.27408$

$$s_{e} = 6.61234 = 6.61$$

Prediction Interval for an Individual y

$$\hat{y} - E < y < \hat{y} + E$$

where

$$E = t_{\alpha/2} s_{e} / \sqrt{1 + \frac{1}{n} + \frac{n(x_{0} - \bar{x})^{2}}{n(\Sigma x^{2}) - (\Sigma x)^{2}}}$$

 x_0 represents the given value of x $t_{\alpha/2}$ has n - 2 degrees of freedom

Given the sample data in Table 9-1, we found that the regression equation is $\hat{y} = -113 + 2.27x$. We have also found that when x = 85, the predicted number of manatee deaths is 80.0. Construct a 95% prediction interval given that x = 85.

$$E = t_{\alpha/2} s_{e} \sqrt{1 + \frac{1}{n} + \frac{n(x_{0} - \overline{x})^{2}}{n(\Sigma x^{2}) - (\Sigma x)^{2}}}$$
$$E = (2.306)(6.6123) \sqrt{1 + \frac{1}{10} + \frac{10(85 - 74)^{2}}{10(55289) - (741)^{2}}}$$

E = 18.1

Given the sample data in Table 9-1, we found that the regression equation is $\hat{y} = -113 + 2.27x$. We have also found that when x = 85, the predicted number of manatee deaths is 80.0. Construct a 95% prediction interval given that x = 85.

$\hat{y} - E < y < \hat{y} + E$ 80.6 - 18.1 < y < 80.6 + 18.1 62.5 < y < 98.7
Section 9-5 Multiple Regression

Created by Erin Hodgess, Houston, Texas

Multiple Regression

Definition Multiple Regression Equation

A linear relationship between a dependent variable y and two or more independent variables $(x_1, x_2, x_3, \dots, x_k)$

$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \ldots + b_k x_k$

Notation

 $\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + \dots + b_k x_k$ (General form of the estimated multiple regression equation)

- n = sample size
- k = number of independent variables
- \hat{y} = predicted value of the dependent variable y
- $x_1, x_2, x_3 \dots, x_k$ are the independent variables

Notation

 β_0 = the y-intercept, or the value of y when all of the predictor variables are 0 b_0 = estimate of β_0 based on the sample data $\beta_1, \beta_2, \beta_3, \ldots, \beta_k$ are the coefficients of the independent variables $x_1, x_2, x_3, \ldots, x_k$ $b_1, b_2, b_3, \ldots, b_k$ are the sample estimates the coefficients $\beta_1, \beta_2, \beta_3, \ldots, \beta_k$ of

Assumption

Use a statistical software package such as

For reasons of safety, a study of bears involved the collection of various measurements that were taken after the bears were anesthetized. Using the data in Table 9-3, find the multiple regression equation in which the dependent variable is weight and the independent variables are head length and total overall length.

Table 9-3	Data fro	Data from Anesthetized Male Bears									
Variable	Minitab Column	Name	Sample Data								
У	C1	WEIGHT	80	344	416	348	262	360	332	34	
<i>x</i> ₂	C2	AGE	19	55	81	115	56	51	68	8	
<i>x</i> ₃	C3	HEADLEN	11.0	16.5	15.5	17.0	15.0	13.5	16.0	9.0	
<i>x</i> ₄	C4	HEADWDTH	5.5	9.0	8.0	10.0	7.5	8.0	9.0	4.5	
<i>x</i> ₅	C5	NECK	16.0	28.0	31.0	31.5	26.5	27.0	29.0	13.0	
<i>x</i> ₆	C6	LENGTH	53.0	67.5	72.0	72.0	73.5	68.5	73.0	37.0	
<i>x</i> ₇	C7	CHEST	26	45	54	49	41	49	44	19	

Minitab											
The regression equation is Multiple											
WEIGHT = $-374 + 18.8$ HEADLEN + 5.87 LENGTH $\leftarrow 1$ regression											
D	0	C	C + 1		equation						
Predictor	Coe	Ξ	Stdev	t-ratio	Р						
Constant	-374.	3	134.1	-2.79	0.038						
HEADLEN	18.8	32	23.15	0.81	0.453						
LENGTH	5.87	′ 5	5.065	1.16	0.299						
s = 68.56	R-sq = 82	.8% R-	sq(adj) =	75.9%							
Analysis of Variance $R^2 = 0.828$ ② Adjusted $R^2 = 0.759$											
SOURCE	DF	SS	MS	F	р						
Regression	2	113142	56571	12.03	0.012						
Error	5	23506	4701		1						
Total	7	③ Overall significance of multiple regression equation									

The regression equation is:

WEIGHT = -374 + 18.8 HEADLEN + 5.87 LENGTH $y = -374 + 18.8x_3 + 5.87x_6$

Adjusted R²

Definitions

The multiple coefficient of determination is a measure of how well the multiple regression equation fits the sample data.

The Adjusted coefficient of determination R² is modified to account for the number of variables and the sample size.

Adjusted R²

Adjusted $R^2 = 1 - \frac{(n-1)}{[n-(k+1)]}(1-R^2)$

Formula 9-6

where n =sample size k =number of independent (x) variables

Finding the Best Multiple Regression Equation

- 1. Use common sense and practical considerations to include or exclude variables.
- 2. Instead of including almost every available variable, include relatively few independent (*x*) variables, weeding out independent variables that don't have an effect on the dependent variable.
- 3. Select an equation having a value of adjusted R^2 with this property: If an additional independent variable is included, the value of adjusted R^2 does not increase by a substantial amount.
- 4. For a given number of independent (x) variables, select the equation with the largest value of adjusted R^2 .
- 5. Select an equation having overall significance, as determined by the *P*-value in the computer display.

Created by Erin Hodgess, Houston, Texas

Definition

Mathematical Model

A mathematical model is a mathematical function that 'fits' or describes real-world data.

TI-83 Generic Models

- Linear: Quadratic: Logarithmic: Exponential: Power: Logistic:
 - y = a + bx $y = ax^2 + bx + c$ $y = a + b \ln x$ $y = ab^x$ $y = ax^b$ $y = \frac{c}{1 + ae^{-bx}}$

Logarithmic: $y = 1 + 2\ln x$

Development of a Good Mathematics Model

- Look for a Pattern in the Graph: Examine the graph of the plotted points and compare the basic pattern to the known generic graphs.
- Find and Compare Values of R²: Select functions that result in larger values of R², because such larger values correspond to functions that better fit the observed points.
- Think: Use common sense. Don't use a model that lead to predicted values known to be totally unrealistic.