Lecture Slides

ELEMENTARY STATISTICS

TENTH EDITION

Elementary Statistics Tenth Edition

and the Triola Statistics Series

by Mario F. Triola

MARIO F. TRIOLA 🚫

Chapter 2 Summarizing and Graphing Data

2-1 Overview

- **2-2 Frequency Distributions**
- 2-3 Histograms
- **2-4 Statistical Graphics**

Section 2-1 **Overview**

Created by Tom Wegleitner, Centreville, Virginia

Overview Important Characteristics of Data

- 1. Center: A representative or average value that indicates where the middle of the data set is located.
- 2. Variation: A measure of the amount that the values vary among themselves.
- 3. Distribution: The nature or shape of the distribution of data (such as bell-shaped, uniform, or skewed).
- 4. Outliers: Sample values that lie very far away from the vast majority of other sample values.
- 5. Time: Changing characteristics of the data over time.

Section 2-2 Frequency Distributions

Created by Tom Wegleitner, Centreville, Virginia

Key Concept

When working with large data sets, it is often helpful to organize and summarize data by constructing a table called a frequency distribution, defined later. Because computer software and calculators can generate frequency distributions, the details of constructing them are not as important as what they tell us about data sets.

Definition

Frequency Distribution (or Frequency Table)

lists data values (either individually or by groups of intervals), along with their corresponding frequencies or counts

Table 2-1Academy Awards: Ages of Best
Actresses and Best Actors

The ages (in years) are listed in order, beginning with the first awards ceremony.

Best Actresses

22	37	28	63	32	26	31	27	27	28
30	26	29	24	38	25	29	41	30	35
35	33	29	38	54	24	25	46	41	28
40	39	29	27	31	38	29	25	35	60
43	35	34	34	27	37	42	41	36	32
41	33	31	74	33	50	38	61	21	41
26	80	42	29	33	35	45	49	39	34
26	25	33	35	35	28				
Best Actors									
44	41	62	52	41	34	34	52	41	37
38	34	32	40	43	56	41	39	49	57
41	38	42	52	51	35	30	39	41	44
49	35	47	31	47	37	57	42	45	42
44	62	43	42	48	49	56	38	60	30
40	42	36	76	39	53	45	36	62	43
51	32	42	54	52	37	38	32	45	60
46	40	36	47	29	43				

Frequency Distribution Ages of Best Actresses

Table 2-2			
Frequency Distribution:			
Ages of Best Actresses			
Age of			
Age of			
Actress	Frequency		
21 20	20		
21-30	28		
31–40	30		
41–50	12		
51–60	2		
61–70	2		
71–80	2		

Original Data

Frequency Distribution

Frequency Distributions

Definitions

Lower Class Limits

are the smallest numbers that can actually belong to different classes

Upper Class Limits

are the largest numbers that can actually belong to different classes

Class Boundaries

Class Midpoints

can be found by adding the lower class limit to the upper class limit and **Table 2-2** dividing the sum by two Frequency Distribution: Ages of Best Actresses Age of Frequency Actress 21 - 3028 25.5 31 - 4030 35.5 Class 41–50 12 45.5 **Midpoints** 51-60 2 55.5 65.5 61-70 2 71-80 2 75.5

Class Width

is the difference between two consecutive lower class limits or two consecutive **Table 2-2** lower class boundaries Frequency Distribution: Ages of Best Actresses Age of Frequency Actress 21 - 3028 10 31 - 4030 10 Class 12 41–50 10 Width 51-60 2 10 2 61-70 10 2 71-80 10

Reasons for Constructing Frequency Distributions

- 1. Large data sets can be summarized.
- 2. We can gain some insight into the nature of data.
- 3. We have a basis for constructing important graphs.

Constructing A Frequency Distribution

- 1. Decide on the number of classes (should be between 5 and 20).
- 2. Calculate (round up).

class width
$$\approx \frac{(\text{maximum value}) - (\text{minimum value})}{\text{number of classes}}$$

- 3. Starting point: Begin by choosing a lower limit of the first class.
- 4. Using the lower limit of the first class and class width, proceed to list the lower class limits.
- 5. List the lower class limits in a vertical column and proceed to enter the upper class limits.
- 6. Go through the data set putting a tally in the appropriate class for each data value.

Relative Frequency Distribution

includes the same class limits as a frequency distribution, but relative frequencies are used instead of actual frequencies

relative fragmanav	class frequency	
relative frequency =	sum of all frequencies	

Relative Frequency Distribution

Table 2-2 Frequency Ages of B	y Distribution: est Actresses	Table 2-3 Relative F Distributi	requency on of Best	
Age of Actress	Frequency	Age of Actress	Relative Frequency	_
21–30	28	21–30	37%	28/76 = 37%
31–40	30	31–40	39%	30/76 = 39%
41–50	12	41–50	16%	
51–60	2	51–60	3%	etc.
61–70	2	61–70	3%	
71–80	2	71–80	3%	

Total Frequency = 76

Cumulative Frequency Distribution

Table 2-2 Frequency Ages of Be	y Distribution: est Actresses	Table 2-4Cumulative FrequencyDistribution of BestActress Ages	
Age of Actress	Frequency	Age of Cumulative Actress Frequency	
21–30 31–40 41–50 51–60 61–70 71–80	28 30 12 2 2 2 2	Less than 31 28 Less than 41 58 Less than 51 70 Less than 61 72 Less than 71 74 Less than 81 76	Cumulative Frequencies

Frequency Tables

Table 2-2 Frequenc Ages of B	y Distribution: est Actresses	Table 2-3Relative FrequencyDistribution of BestActress Ages		Table 2-4Cumulative FrequencyDistribution of BestActress Ages	
Age of Actress	Frequency	Age of Actress	Relative Frequency	Age of Cumulat Actress Frequen	ive cy
21–30	28	21–30	37%	Less than 31 28	
31–40	30	31–40	39%	Less than 41 58	
41–50	12	41–50	16%	Less than 51 70	
51–60	2	51–60	3%	Less than 61 72	
61–70	2	61–70	3%	Less than 71 74	
71–80	2	71–80	3%	Less than 81 76	

Critical Thinking Interpreting Frequency Distributions

In later chapters, there will be frequent reference to data with a normal distribution. One key characteristic of a normal distribution is that it has a "bell" shape.

The frequencies start low, then increase to some maximum frequency, then decrease to a low frequency.

The distribution should be approximately symmetric.

Recap

In this Section we have discussed

- Important characteristics of data
- Frequency distributions
- Procedures for constructing frequency distributions
- Relative frequency distributions
- Cumulative frequency distributions

Section 2-3 Histograms

Created by Tom Wegleitner, Centreville, Virginia

A histogram is an important type of graph that portrays the nature of the distribution.

Histogram

A bar graph in which the horizontal scale represents the classes of data values and the vertical scale represents the frequencies

Relative Frequency Histogram

Has the same shape and horizontal scale as a histogram, but the vertical scale is marked with relative frequencies instead of actual frequencies

Critical Thinking Interpreting Histograms

One key characteristic of a normal distribution is that it has a "bell" shape. The histogram below illustrates this.

Recap

In this Section we have discussed

Histograms

Relative Frequency Histograms

Section 2-4 Statistical Graphics

Created by Tom Wegleitner, Centreville, Virginia

Key Concept

This section presents other graphs beyond histograms commonly used in statistical analysis.

The main objective is to understand a data set by using a suitable graph that is effective in revealing some important characteristic.

Frequency Polygon

Uses line segments connected to points directly above class midpoint values

Ogive

A line graph that depicts **cumulative** frequencies

Dot Plot

Consists of a graph in which each data value is plotted as a point (or dot) along a scale of values

Stemplot (or Stem-and-Leaf Plot)

Represents data by separating each value into two parts: the stem (such as the leftmost digit) and the leaf (such as the rightmost digit)

Stem (tens)	Leaves (units)				
2	12445555	5666677778888999999			
3	00111223	0011122333334445555555677888899			
4	01111122	23569			
5	04	\leftarrow Values are 50 and 54.			
6	013				
7	4				
8	0	\leftarrow Value is 80.			

Pareto Chart

A bar graph for qualitative data, with the bars arranged in order according to frequencies

Pie Chart

A graph depicting qualitative data as slices of a pie

Scatter Plot (or Scatter Diagram)

A plot of paired (*x*, *y*) data with a horizontal x-axis and a vertical y-axis

Time-Series Graph

Data that have been collected at different points in time

Other Graphs

Recap

In this section we have discussed graphs that are pictures of distributions.

Keep in mind that a graph is a tool for describing, exploring and comparing data.

