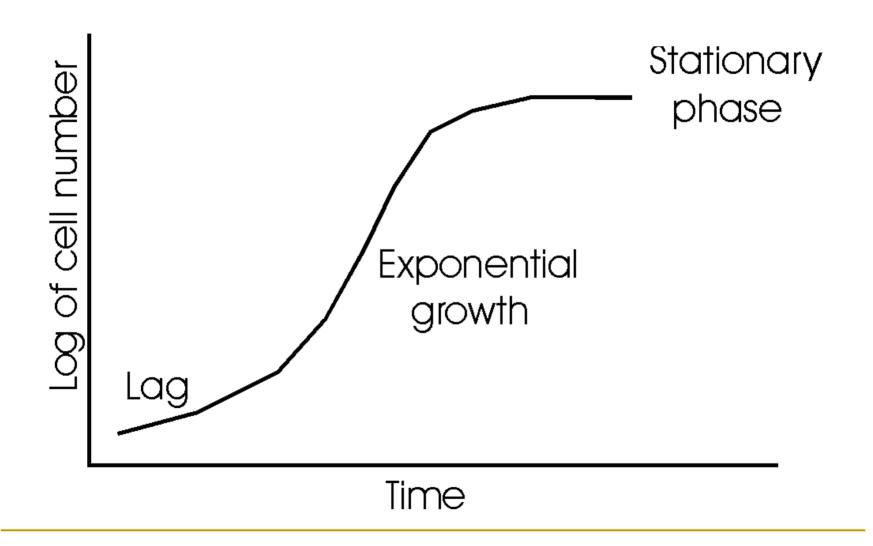

Bacterial Requirements

Growth and Nutrition

Bacterial Reproduction

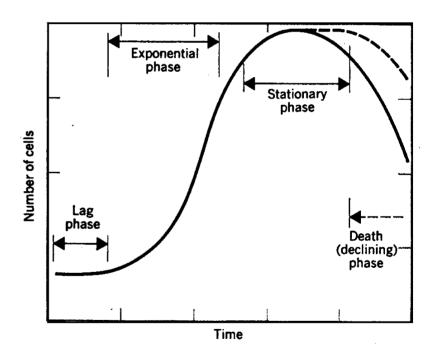
- Reproduction
 - Binary Fission
 - Budding
 - Fragmenting
- Function
 - Increase number of cells
 - Genetic recombination possible
- End result : Growth

Daughter Cells

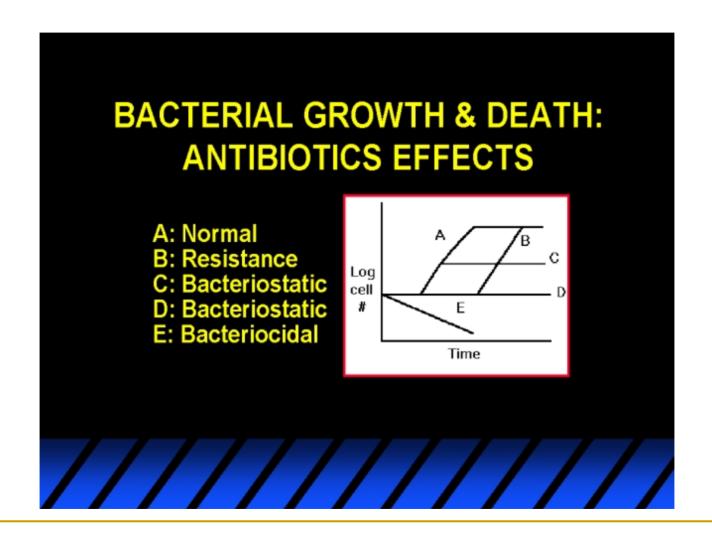


Generation Time

- Define
- Time
- Reason
- Requirements
 - Physical
 - Chemical
- Result
 - Genetic recombination
 - Mutations



Growth Curve Graph

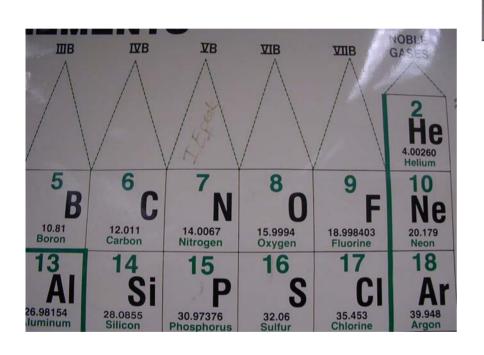


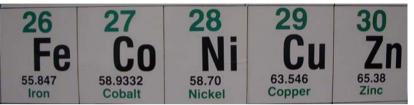
Growth Curve Labeled Phases

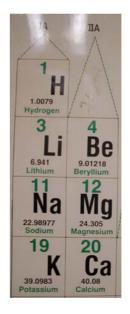
- Lag phase
 - Adaptive
 - Start metabolism
 - 1-3 days
- Log phase
 - Generation time doubles
 - Most metabolically active
- Stationary phase
 - □ Growth = death
- Death phase
 - Requirements decrease
 - Possible spore formation

Growth Curve Changes due to AB

Measurement of Microbial Growth

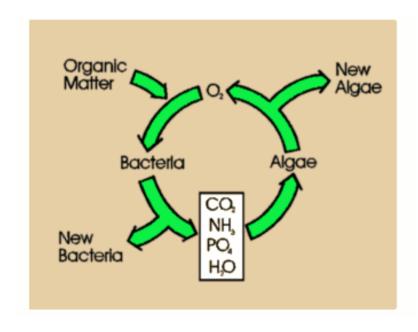

- CFU
- Serial Dilutions
- Pour Plate
- Spread Plate
- Direct
 - Number counted / fov
- Indirect
 - Turbidity
 - Metabolic activity

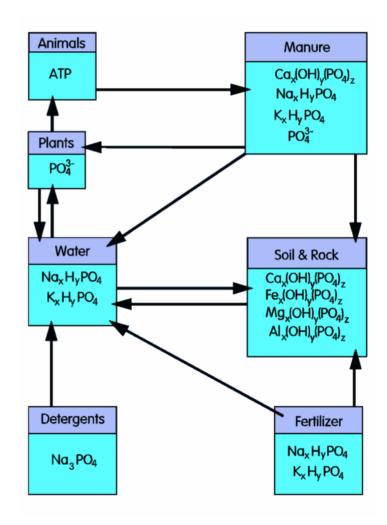

Nutritional Requirements


	I IA	7					Perio	dic T	able (of the	Elen	nents						18 8A
1	1 H 1.00794	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4.00260
2	3 Li 6.941	4 Be 9.01218											5 B 10.811	6 C 12.011	7 N 14.0067	8 O 15.9994	9 F 18.9984	10 Ne 20.1797
3	11 Na 22.9898	12 Mg 24.3050	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 — 8B —	10	11 1B	12 2B	13 Al 26.9815	14 Si 28.0855	15 P 30.9738	16 S 32.066	17 Cl 35,4527	18 Ar 39.948
4	19 K 39.0983	20 Ca 40.078	21 Sc 44.9559	22 Ti 47.88	23 V 50.9415	24 Cr 51.9961	25 Mn 54.9380	26 Fe 55.847	27 Co 58.9332	28 Ni 58.69	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.59	33 As 74.9216	34 Se 78.96	35 Br 79.904	36 Kr 83.80
5	37 Rb 85.4678	38 Sr 87.62	39 Y 88.9059	40 Zr 91.224	41 Nb 92.9064	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.906	46 Pd 106,42	47 Ag 107.868	48 Cd 112.411	49 In 114.82	50 Sn 118.710	51 Sb 121.75	52 Te 127.60	53 I 126.905	54 Xe 131.29
6	55 Cs 132,905	56 Ba 137.327	57 *La 138.906	72 Hf 178.49	73 Ta 180.948	74 W 183.85	75 Re 186.207	76 Os 190.2	77 Ir 192.22	78 Pt 195.08	79 Au 196.967	80 Hg 200.59	81 Tl 204.383	82 Pb 207.2	83 Bi 208.980	84 Po (209)	85 At (210)	86 Rn (222)
7	87 Fr (223)	88 Ra 226.025	89 † Ac 227.028	104 Ru (261)	105 Ha (262)	106 Unh (263)	107 Uns (262)	108 Uno (265)	109 Une (266)			261						
*Lanthanide series: 58 Ce 140,12					59 Pr 140.908	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.965	64 Gd 157.25	65 Tb 158.925	66 Dy 162,50	67 Ho 164.930	68 Er 167.26	69 Tm 168.934	70 Yb 173.04	71 Lu 174.967	
† Actinide series: 90 Th 232.038						91 Pa 231.036	92 U 238.029	93 Np 237.048	94 Pu (244)	95 Am (243)	96 Cm	97 Bk	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No	103 Lr (260)

Atomic weights are based on carbon-12. For certain radioactive elements the numbers listed (in parentheses) are the mass numbers of the most stable isotopes.

Macro and Trace Elements

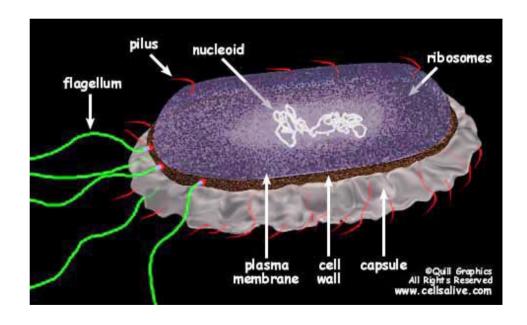



Nutritional Element Use

- Carbon
- Oxygen
- Nitrogen
- Hydrogen
- Phosporus
- Sulfur

- Main component
- Cell water, aerobic respiration
- AA, NA, coenzymes
- H20
- Nucleotides, PL, LPS
- Several AA; coenzyme

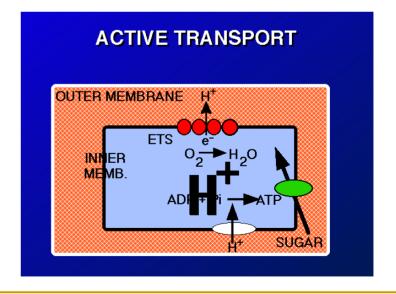
Cycles



Metal Ions and Trace Minerals

- Potassium
- Magnesium
- Calcium
- Iron
- Cobolt
- Zinc
- Copper
- Manganese

Cofactors in enzymatic reactions in the cell

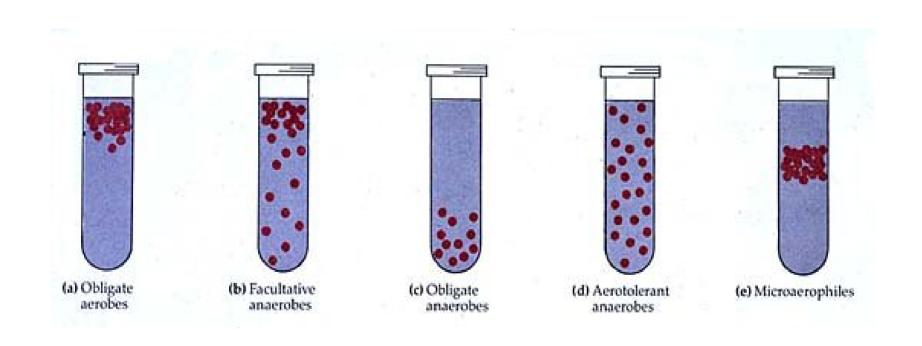

Growth Factors: Vitamins

- Folic Acid
- Biotin
- Niacin
- Pantothenic acid
- Riboflavin [B2]
- Thiamine [B1]
- Pyridoxine [B6]
- B12
- K

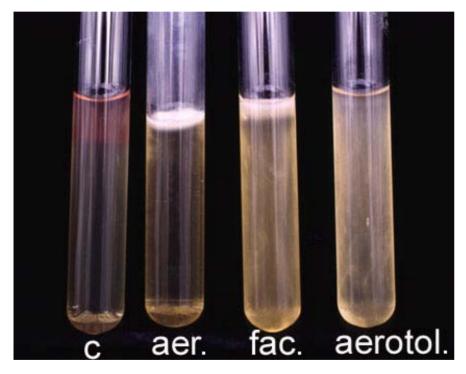
involved in many

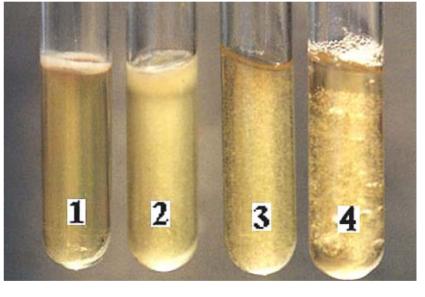
Metabolic Reactions

redox deamination decarboxylation transamination synthesis



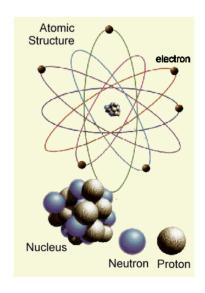
Oxygen Requirements


- Obligate Aerobes
- Microaerophiles
- Aerotolerant aerobes
- Obligate Anaerobes
- Facultative Anaerobes
- Capnophiles



Oxygen Requirement Classification

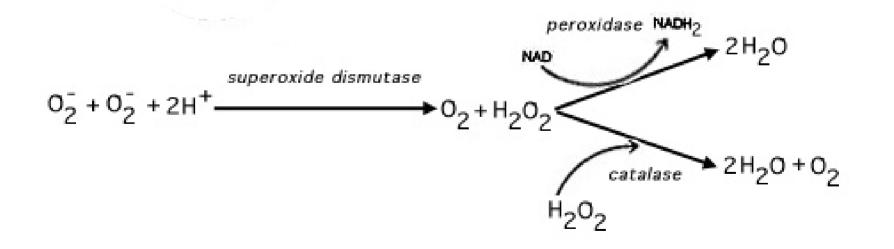
Aerobic / Anaerobic Lab Tests

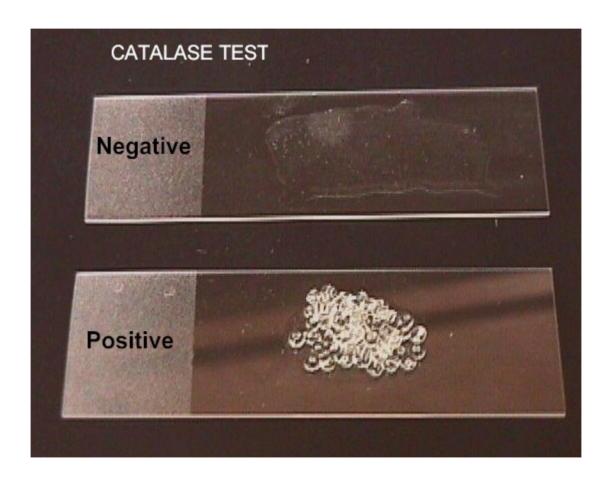


aerobe FA aerotolerant anaerobe

Oxygen Forms

- Normal
- Toxic
 - Singlet: 102
 with electrons in higher energy state
 - Superoxide radical: O2-
 - Peroxide Anion: O2=
 - Hydroxide radical: OHfrom incomplete reduction of hydrogen peroxide [H2O2]




Enzyme Presence to Detoxify O2 -

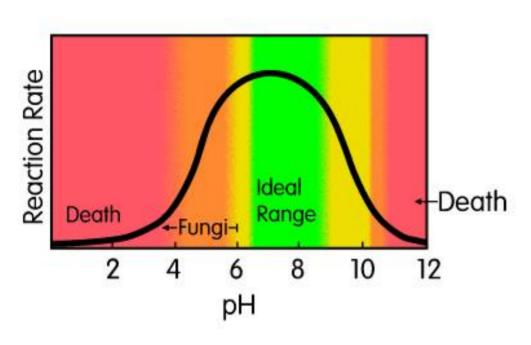
- Abligate Aerobes and FA
- Aerotolerant Anaerobes
- Obligate anaerobes

Superoxide Catalase Peroxidase
+ + + -

Catalase Test

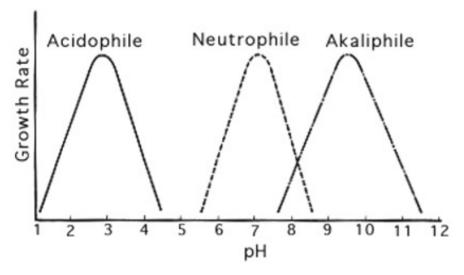
Bacterial Examples of O2 Groups

- Obligate Aerobes
 - Pseudomonas
- Microaerophiles
 - H. pylori
- Aerotolerant aerobes
 - Streptococcus
 - Lactobacillus
- Obligate Anaerobes
 - Clostridium
- Facultative Anaerobes
 - □ E. coli
 - Stapylococcus
- Capnophilic
 - Campylobacter

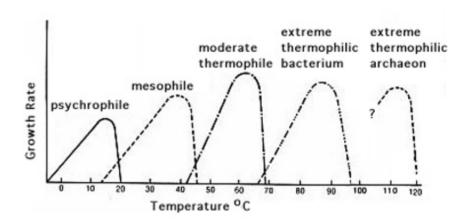


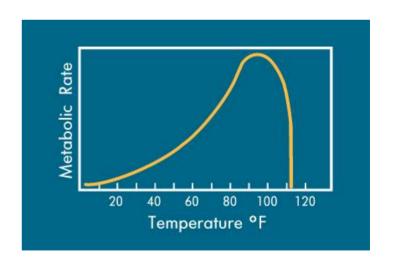
E coli

Staph

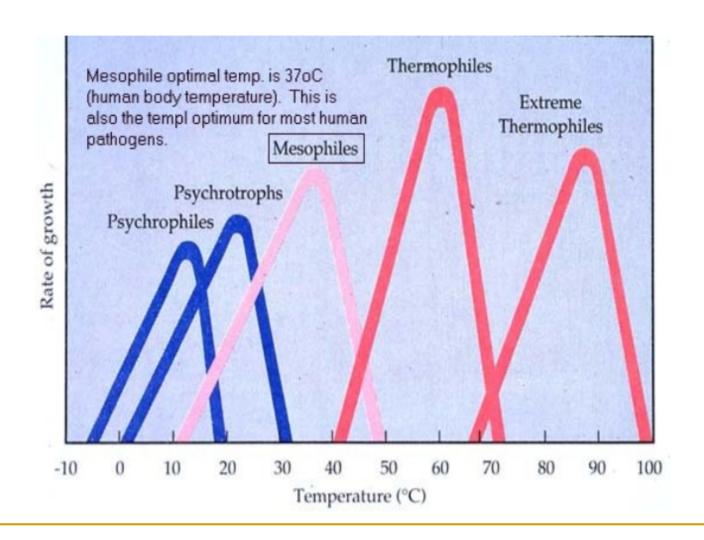

Physical Requirements: pH

pH Groups

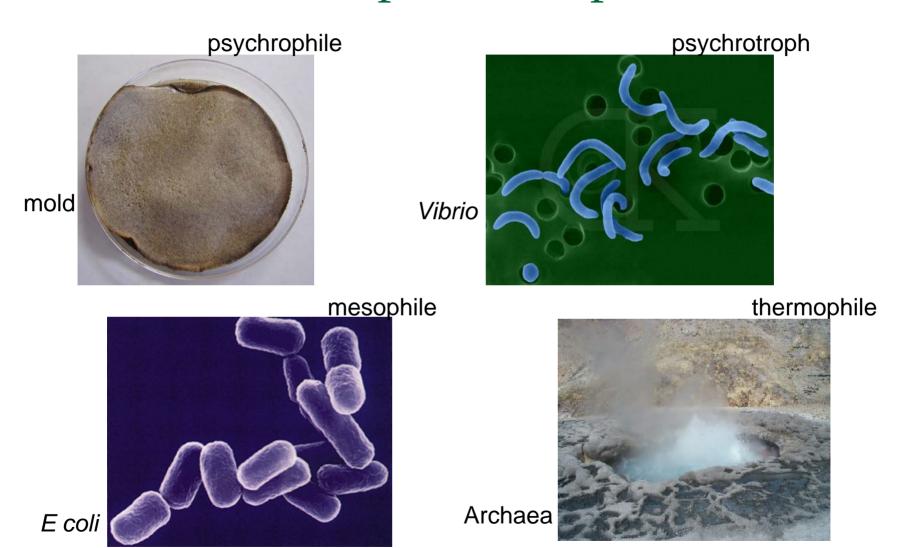



Acidophile

- Bacillus acidocaldarius
- Lactobacillus acidophilus
- Neutrophile
 - □ E. coli
 - Staphylococcus aureus
- Akaliphile
 - Streptococcus pneumoniae
 - Nitrobacter sp.


Physical Requirements: Temperature

- Psychrophile
 - Unsaturated FA in cell membrane
- Psychrotroph
 - Refrigeration
 - Room temperature
- Mesophile
 - Warm Blooded Animals
- Thermophile
 - Saturated FA in cell membrane



Psychrotrophs and Mesophiles

Bacterial Examples: Temperature

Physical Requirements: Salt

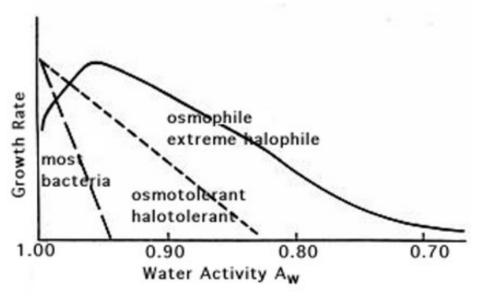
Extreme Halophile : 30 % NaCl

Obligate Halophile : 15% NaCl

Facultative Halophile : 2% NaCl

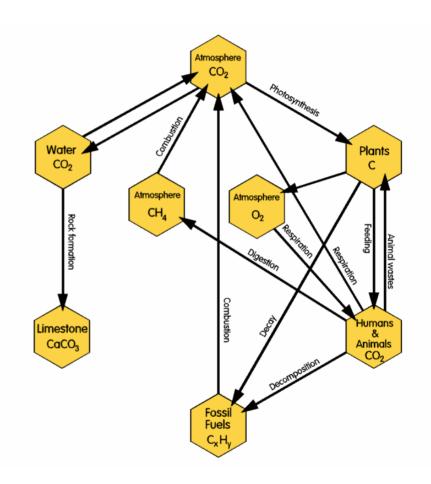
Halotolerant : NaCl not needed, can grow in low salt


Extreme Halophiles

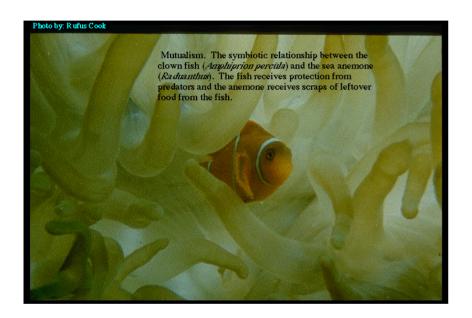


Great Salt Lake

Osmosis and Water Activity


- Activity of water [Aw]= 1.0 for pure water
- Aw for human blood= 0.99
- Range required 0.7-1.0 Aw
 - E.coli requires Aw of 0.91
 - Stapylococcus requiresAw of 0.85

Nutritional Groups


- Photoautotrophs
- Chemoautotrophs
- Photoheterotrophs
- Chemoheterotrophs
 - Many bacteria
 - Most all Eukarya
- How Acquire Electrons
 - Organotrophs
 - Lithotrophs

Symbiotic Relationships

- Close ecological relationship between individuals of two or more different species
- Mutualism
- Commensalism
- Synergism
- Parasitism
- Competition
- Neutralism
- Biofilms

Mutualism: Both Benefit

Human Eye-lash mite

Bacterial Symbiosis

Normal microbiota of the conjunctiva

- 1. Coagulase-negative staphylococci
- 2. Haemophilus spp.
- 3. Staphylococcus aureus
- 4. Streptococci (various species)

Normal microbiota of the outer ear

- 1. Coaqulase-negative staphylococci
- 2. Diphtheroids
- 3. Pseudomonas spp.
- 4. Enterobacteriaceae (occasionally)

Normal microbiota of the stomach

- 1. Streptococcus
- 2. Staphylococcus
- 3. Lactobacillus
- 4. Peptostreptococcus

Normal microbiota of the skin

- 1. Coagulase-negative staphylococci
- 2. Diphtheroids (including Propionibacterium acnes)
- 3. Staphylococcus aureus
- 4. Streptococci (various species)
- 5. Bacillus spp.
- 6. Malassezia furfur
- 7. Candida spp.

urethra

8. Mycobacterium spp. (occasionally)

Normal microbiota of the

1. Coagulase-negative

3. Streptococci (various

staphylococci

2. Diphtheroids

species)

Normal microbiota of the vagina

- 1. Lactobacillus spp.
 - 2. Peptostreptococcus spp.
 - 3. Diphtheroids
 - 4. Streptococci (various)
 - 5. Clostridium spp.
 - 6. Bacteroides spp.
 - 7. Candida spp.
 - 8. Gardnerella vaginalis

Normal microbiota of the nose

- 1. Coaqulase-negative staphylococci
- 2. Viridans streptococci
- 3. Staphylococcus aureus
- 4. Neisseria spp.
- 5. Haemophilus spp.
- 6. Streptococcus pneumoniae

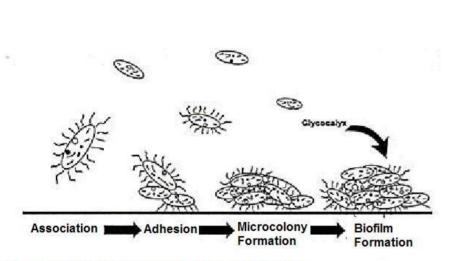
Normal microbiota of the mouth and oropharynx

- 1. Viridians streptococci 2. Coagulase-negative
- staphylococci
- 3. Veillonella spp.
- 4. Fusobacterium spp.
- 5. Treponema spp
- 6. Porphyromonas spp. and Prevotella spp.
- 7. Neisseria spp. and Branhamella catarrhalis
- 8. Streptococcus pneumoniae

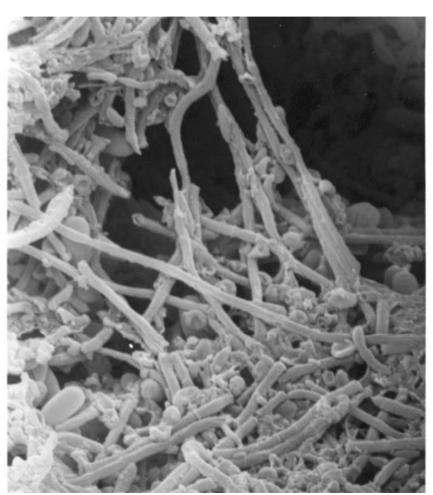
- 9. Beta-hemolytic streptococci
- (not group A) 10. Candida spp.
- 11. Haemophilus spp.
- 12. Diphtheroids
- 13. Actinomyces spp. 14. Eikenella corrodens
- 15. Staphylococcus aureus

Normal microbiota of the small intestine

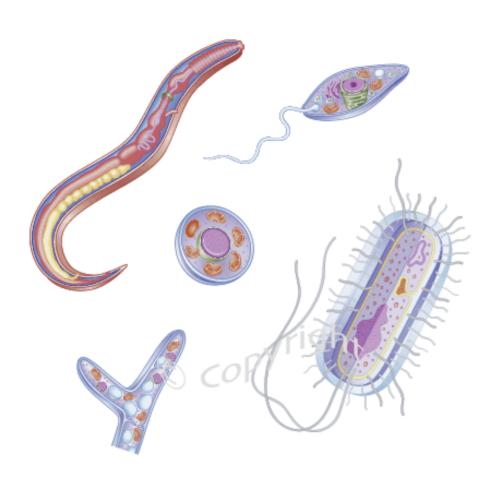
- 1. Lactobacillus spp.
- 2. Bacteroides spp.
- 3. Clostridium spp.
- 4. Mycobacterium spp. 5. Enterococci
- 6. Enterobacteriaceae


Normal microbiota of the large intestine

- 1. Bacteroides spp.
- 2. Fusobacterium spp.
- 3. Clostridium spp.
- 4. Peptostreptococcus spp.
- 5. Escherichia coli
- 6. Klebsiella spp.
- 7. Proteus spp.
- 9. Enterococci
- 8. Lactobacillus spp.
- 10. Streptococci (various species)
- 11. Pseudomonas spp.
- 12. Acinetobacter spp.
- 13. Coagulase-negative staphylococci
- 14. Staphylococcus aureus
- 15. Mycobacterium spp.
- 16. Actinomyces spp.

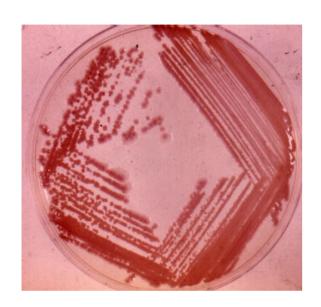

4. Mycobacterium spp. 5. Bacteroides spp. and Fusobacterium spp.

6. Peptostreptococcus spp.


Biofilms

Schematic Representation of Biofilm

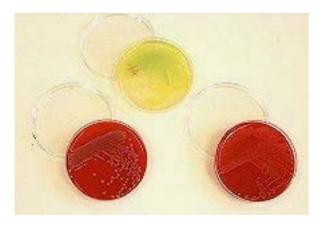
Parasitism



Agar


Culturing Organisms

- Inoculum
- Medium
- Pure Culture
- Sterile



Cultivation Media

- Chemically Defined
- Complex Undefined
 - General Use
 - Enriched
 - Selective
 - Differential
 - Anaerobic

Cultural Characteristics

- Solid Media [Petri]
 - Color
 - Size
 - Shape
 - Elevation
 - Margin
- Broth Media
- Slant
- Gelatin Liquefaction

Colony Characteristics on Agar Plate

Bacterial Colony Elevation

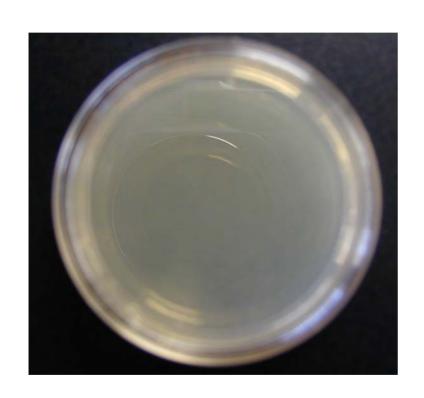
Bacterial Colony Margin

serrate or erose

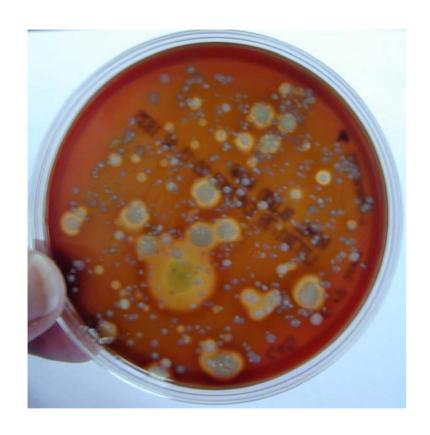
filamentous

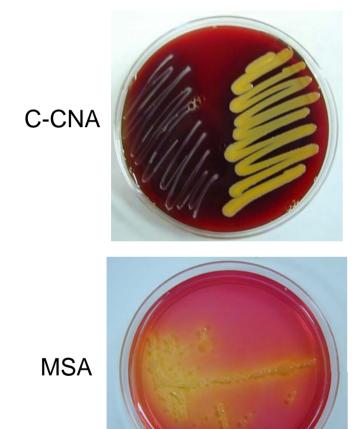
curled

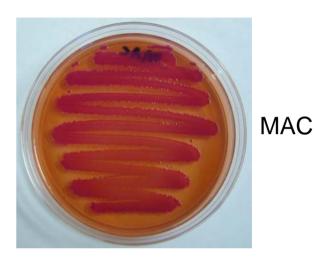
Bacterial Colony Form



filamentous spindle


Complex General Media: Nutrient (TSA) Agar


Enriched Media



Selective and Differential Media

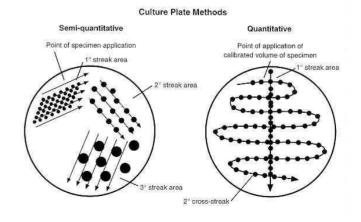
Special Media

MH-T

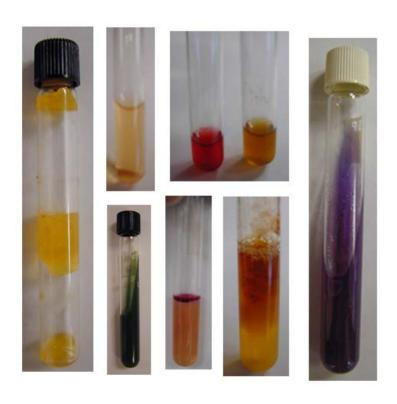
SAB

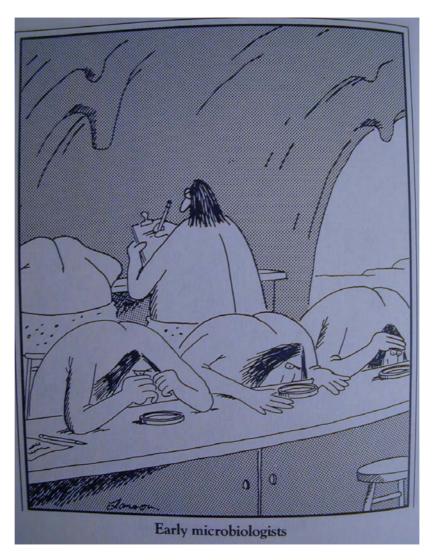
Snyder Deep

Anaerobic Culture Methods



Isolation Techniques




Biochemical Reactions

Questions?

