Microbial Metabolism

Biochemical diversity

Metabolism

- o Define
- o Requirements
 - Energy
 - Enzymes
- o Rate
 - Limiting step
 - Reaction time
- o Types
 - Anabolic
 - Endergonic
 - Dehydration
 - Catabolic
 - Exergonic
 - Hydrolytic

Metabolism Relationships

Metabolic Diversity

• Energy generating metabolism

- Fermentation
 - Alcohol
 - Acid Formation
 - Lactic Acid
 - Mixed Acids
 - Others
- Respiration
 - Aerobic
 - Anaerobic
- Biosynthesis of secondary metabolites
 - Heterotrophic
 - Autotrophic

Energy

- o Forms
 - Kinetic
 - Potential
- o Use
 - Chemical
 - Mechanical
 - Electrical
 - Radiation [EM]
- Chemical Types
 - ATP
 - UTP
 - GTP
- o Heat
 - Byproduct
 - 45%

Various Types of Prokaryotic Energy Production Processes

- o Fermentation
- Anaerobic Respiration
- Aerobic Respiration
- Lithotrophy
- Photohetertrophy
- Anoxygenic photosynthesis
- Methanogenesis

Enzymes

o Structure

- Protein
- Ribozyme [ribosome]
- Characteristic functions
 - Active site
 - Specific
 - Modified Forms
 - o Inactive
 - o Active
 - Coenzyme/Cofactor
 - -ase

Polymerase

Others: Lyases, Hydrolases, Isomerases, Transferases

Enzyme Characteristics

Enzyme Structure

- Apoenzyme
 - Protein
 - Allosteric site
- o Cofactor
 - Metal ions
 - o Cu
 - o Zn
 - o Mg
 - o Fe
 - o Ca
- o Coenzyme
 - Vitamins
 - CoA
 - NAD
 - FAD
 - FMN

Create Holoenzyme with active site

Factors Affecting Enzymes

- o Temperature
- o pH
- Acids/bases
- o UV light
- Concentration of substrates

Enzyme Inhibition

Glycolysis: Embden-Meyerhoff

- Glycolytic
 Cytoplasm
 Anaerobic
 End products

 2 Pyruvic acids
 4-2 = 2 net ATP
 - 2 NADH
 - 2 H20

Lactic Acid Formation

Glycolysis: PPP

- o Breakdown 5-6 C
- o Cytoplasm
- o Anaerobic
- End products
 - ATP
 - NADPH
 - CO2
 - 4,5,6,7 C
 - o AA
 - Nucleotides
 - Glycolytic pathways
 - o Photosynthesis

Glycolysis: Entner-Duodoroff [E-D]

- o Glycolytic
- o Cytoplasm
- o Anaerobic
- Different enzymes
 - Pseudomonas
 - Enterococcus
- End products
 - 2-1 = 1 net ATP
 - NADPH
 - NADH
 - 2 Pyruvic acids
 - 2H20

Glycolytic Pathways used by various Bacteria

Bacterium	E-M	PPP	E-D
Acetobacter aceti	-	+	-
Bacillus subtilis	major	minor	-
E. coli	+	-	-
Lactobacillus acidophilus	+	-	-
Pseudomonas aeruginosa	-	-	+
Vibrio cholera	minor	-	major

Anaerobic Processes

Lactic Acid \bigcirc Lactobacillus Mixed Acid Enterobacteriaceae Butanediol Klebsiella Enterobacter Butyric Acid Clostridia Butanol-Acetone Clostridia Propionic Acid Corynebacteria

Anaerobic Respiration

Alcoholic Fermentation

Fermentation

Fermentation Pathways

Fermentation Summary

- o Anaerobic
- o Cytoplasm
- Partial Oxidation
- Small amounts of ATP generated via substrate level phosphorylation
- Organic intermediaries as final electron acceptors
- End products
 - Acid: Lactic Acid, Acetic Acid, Butryic Acid, Acetone
 - Alcohol: Ethanol, Isopropyl
 - Gas : CO2, H2
 - Contaminants

Summary

Carbohydrate Fermentation Tests

Phosphorylation

Substrate Level

- Direct transfer of phosphate
- Glycolysis
- Oxidative Phosphorylation
 - Electron transfer
 - Chemiosmosis
- Photophosphorylation
 - Light energy to chemical energy

Substrate Level Phosphorylation

phosphoenolpyruvate

pyruvate

glycerate

Aerobic Respiration

Mitochondria of Eukaryotes

Plasma [cell] membrane

Functions of Plasma Membrane Proteins

Acetyl CoA Formation

Acetyl CoA Final Structure

Krebs Cycle

Oxidation in Krebs Cycle

Dehydrogenation

- Use of hydrogen in oxidative reactions
 - Removal of electron from hydrogen
 - Carried on vitamin B derivatives
- Energy released is trapped in chemical bonds

Redox Reactions

Oxidation

Catabolism + Anabolism

Eukaryotic ETC

Prokaryotic ETC

Vit B based Flavoproteins Iron based Cytochromes CoEnzyme Q

ETC Steps

- Electrons from NADH or FADH2 to flavoproteins
- H+ pumped into periplasm
- Electrons transported
 - To Iron-Sulfur proteins from NADH
 - To CoQ from FADH2
- Cytochromes
- Final Electron Acceptor
 - O2 if Aerobic
 - Other if Anaerobic

Proton Pump

ACTIVE TRANSPORT

ETC: NAD

ETC: Cytochromes

ELECTRON TRANSPORT CHAIN

Copyright @2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Cytochrome Oxidase

Oxidase Test

ATP Synthetase

Anaerobic Respiration

- Use of another compound than O2 as final electron acceptor in the ETC
- Examples
 - Nitrate ion NO3-[Pseudomonas, E coli, Bacillus]
 - o NO2-
 - N2O
 - o N2
 - Sulfate ion SO4= to H2S
 - o Methanogens
 - Carbonate ion CO3= to CH4
 - o Methanogens

Nitrogen Reduction Test

Nitrate Reduction +

Nitrate Reduction Neg with zinc

Nitrate Reduction + with Zinc

Other Catabolic Processes

o Protein

- Deamination
- Decarboxylation
- Dehydrogenation
- o Lipid
 - Glycerol
 - FA
 - Beta oxidation
 - Acetyl CoA

Biosynthesis

• Polysaccharide

- Keto acids
- AA
- Glycerol from FA
- o Lipid
 - Glycerol + FA
- o AA
 - Keto acids + NH2
- Nucleotides
 - Nitrogen bases from Keto acids + NH2
 - 5 C sugars from alternate CH20 Metabolism

Functions

- o Polysaccharide
 - Cell wall components
- o Lipid
 - Cell wall
 - Plasma membranes
- o AA/Protein
 - Cell wall / membrane components
 - Enzymes
 - Toxins
- o Nucleotide
 - DNA
 - RNA
 - ATP
 - NAD
 - NADP

Protein Synthesis and Enzyme Regulation

Questions?

