
Chapter 2 - Variables and Java Arithmetic 1 | Page

Learning Java through Alice 3
3rd Edition

- An Introduction to Programming

Tebring Daly and Eileen Wrigley

Copyright © 2015 T. Daly & E. Wrigley

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted,

stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to

photocopying, recording, scanning, digitizing, taping, web distribution, information networks, or information storage

and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without

the prior written permission of the authors. For permission to use material from this text or product, submit all requests

to tdaly@collin.edu.

Some of the product names and company names used in this book have been used for identification purposes only and

may be trademarks or registered trademarks of their respective manufacturers and sellers.

The Alice Software System is © by Carnegie Mellon University.

Electronic Arts graphcs is © Electronic Arts, Inc.

The NetBeans Software is © by Oracle Corporation.

ISBN-13: 978-1514278901

mailto:tdaly@collin.edu

Preface 3 | Page

© Daly & Wrigley

Table of Contents

Preface………Page 3

 Acknowledgements
About the Authors
Approach
Chapter Breakdown
Organization

Chapter 0: Getting Started…………………………………………………………Page 13
0-1 Installing the Java and NetBeans
0-2 Installing the Alice Environment
0-3 Setting up NetBeans to Work with Alice
0-4 What is Alice?
0-5 Alice Scene Setup
0-6 Hands-on Exercises
 Exercise 1: Manipulating the Alice Environment

Exercise 2: Manipulating the Alice Environment–Part 2
Exercise 3: Alice in Wonderland Tea Party Scene Setup*

 Exercise 4: Alice Card Game Scene Setup*
0-7 Summary
0-8 Review Questions
0-9 Assignments

Chapter 1: Coding Introduction………………………………………………Page 61

1-1 Introduction to Programming
1-2 What is Java?

History of Java
Java Capabilities

1-3 Programming Process
1-4 Documentation
1-5 Program Errors
1-6 Hands-on Exercises
 Exercise 1: Alice in Wonderland Tea Party Coding*

Exercise 2: Compiling and Executing a Java Program
Exercise 3: Simple Java Debugging
Exercise 4: Transitioning Alice to Java*
Exercise 5: Alice Card Game Coding*

1-7 Summary
1-8 Review Questions
1-9 Assignments

* Ongoing project

Preface 4 | Page

© Daly & Wrigley

Chapter 2: Variables………………………………………………………………………Page 113

2-1 Java Variables
Naming Variables
Using Primitive Data Types
Declaring Variables
Assigning Values to Variables
String Variables

2-2 Java Basics
Statements
Escape Codes
Precedence Rules
Examples
Modulus Explained
Shorthand Assignment Operators
Casting Rules
Walk-Through

2-3 Hands-on Exercises
Exercise 1: Making an Alien Walk in Alice
Exercise 2: Converting Fahrenheit to Celsius with Java*
Exercise 3: Alice Character Movement using Arithmetic
Exercise 4: Using Modulus in Money Changer Java Program*

2-4 Summary
2-5 Review Questions
2-6 Assignments

Chapter 3: Input/Output………………………………………………………………Page 157

 3-1 Data Input
Scanner Class
JOptionPane Class

3-2 Formatting Output
 NumberFormat Class
 DecimalFormat Class
3-3 Importing Packages and Classes
3-4 Hands-on Exercises
 Exercise 1: Changing an Alice Clock’s Time
 Exercise 2: Computing Celsius with Input and Output*
 Exercise 3: Money Changer with Input and Output*
 Exercise 4: Computing Tip Using Input and Output
3-5 Summary
3-6 Review Questions
3-7 Assignments

* Ongoing project

Preface 5 | Page

© Daly & Wrigley

Chapter 4: Procedural Methods………………………………………………Page 187

 4-1 Introduction to Methods
 4-2 Overview
 Classes
 Objects
 Methods
 4-3 Java Application Programming Interface (API)
 4-4 Java Method Declaration
 4-5 Java Method Examples
 Methods with No Parameters
 Methods with Some Parameters
 4-6 Hands-on Exercises
 Exercise 1: Creating a Stomp Method in Alice
 Exercise 2: Making a Dog’s Tail Wag in Alice
 Exercise 3: Creating a Hokey Pokey Method in Alice*
 Exercise 4: Writing “Old MacDonald Had a Farm” Song

Exercise 5: Alice Card Game with Methods*
 4-7 Summary
 4-8 Review Questions
 4-9 Assignments

Chapter 5: Functional Methods………………………………………………Page 251

 5-1 Functional Methods Explained
 5-2 Java Built-in Functional Methods
 Java Application Programming Interface
 Math Functions
 String Functions
 5-3 Alice Built-in Functional Methods
 5-4 Method Declaration
 5-5 Functional Method Example
 5-6 Hands-on Exercises
 Exercise 1: Using Alice Built-in Functional Methods
 Exercise 2: Finding the Circumference of Alice UFOs
 Exercise 3: Calculating BMI Using a Functional Method
 Exercise 4: Writing and Calling Multiple Methods
 Exercise 5: Counting Words
 5-7 Summary
 5-8 Review Questions
 5-9 Assignments

* Ongoing project

Preface 6 | Page

© Daly & Wrigley

Chapter 6: Conditionals………………………………………………………………Page 287

6-1 Conditional Execution
6-2 Alice Functions
6-3 Java Functions
6-4 Java If Statements
6-5 Java Switch Statements
6-6 Java Logical Operators
 Java Hierarchy of Operators
6-7 Hands-on Exercises
 Exercise 1: Shark Moves to Closest Fish in Alice
 Exercise 2: Determining the Tallest Object
 Exercise 3: Using Conditionals to Display a Greeting
 Exercise 4: Using Conditionals for a Guessing Game
 Exercise 5: Validating a Password Entry
 Exercise 6: Setting up a Simple Calculator
 Exercise 7: Card Game with Conditionals*
6-8 Summary
6-9 Review Questions
6-10 Assignments

Chapter 7: Classes and Objects……………………………………………Page 337

7-1 Object-Oriented Concepts
7-2 Java Classes
7-3 Setter and Getter Methods
 Alice Setter and Getter Methods

Java Setter and Getter Methods

7-4 Visualizing Your Application with UML
7-5 Hands-on Exercises

 Exercise 1: Using Setters and Getters
 Exercise 2: Adjusting the Hokey Pokey for All Bipeds*
 Exercise 3: Practicing with Object Oriented Concepts
7-6 Summary
7-7 Review Questions
7-8 Assignments

Chapter 8: GUI and Graphics……………………………………………………Page 377

8-1 Introduction to Graphical User Interfaces
GUI Packages – AWT and Swing
Creating a Window
Placing GUI Components in the Window

8-2 Graphics
Drawing
Layout

* Ongoing project

Preface 7 | Page

© Daly & Wrigley

 Changing the Font
 Changing the Color
 Printing Strings

Drawing Lines
Drawing Rectangles
Drawing Ovals
Drawing Arcs

8-3 Using Paint to Determine Pixel Locations
8-4 Hands-on Exercises
 Exercise 1: Drawing a Happy Face
 Exercise 2: Drawing a Car
8-5 Summary
8-6 Review Questions
8-7 Assignments

Chapter 9: Repetition……………………………………………………………………Page 405

9-1 Loops
9-2 Alice Loops
 While
 For
9-3 Java Loops
 While
 Do/While
 For

 9-4 Branching Statements
 Break Statement
 Continue Statement
 9-5 Hands-on Exercises
 Exercise 1: Hokey Pokey with a For Loop*
 Exercise 2: While Loop Tree Growing
 Exercise 3: While Loop to Sum and Average Numbers
 Exercise 4: For Loop to Print 99 Bottles of Soda Song
 Exercise 5: For Loop to Print Checkerboard
 Exercise 6: For Loop to Print Piano
 Exercise 7: For Loop to Animate Text
 Exercise 8: Card Game with Loops*
 9-6 Summary
 9-7 Review Questions
 9-8 Assignments

* Ongoing project

Preface 8 | Page

© Daly & Wrigley

Chapter 10: Arrays……………………………………………………………………………Page 447

10-1 Declaring and Creating Arrays
 Declaring an Array
 Creating Array Objects
10-2 Accessing and Using Created Arrays
 Accessing Array Elements
 Length of Array
10-3 Hands-on Exercises
 Exercise 1: Entering Scores into an Array
 Exercise 2: Using Command Line Args Box to Enter Scores

 Exercise 3: Using JOptionPane to Enter Scores
 Exercise 4: Drawing Polygons
 Exercise 5: Bubble Sort
 Exercise 6: Card Game with Arrays*

 Exercise 7: Using a For Each loop for a Penguin Array
 10-4 Summary
 10-5 Review Questions
 10-6 Assignments

Appendix………………………………………………………………………………………………………Page 483

 Exception Handling

Preface 9 | Page

© Daly & Wrigley

First and foremost, the authors would like to convey special thanks to the Alice Software team at

Carnegie Mellon University for providing the Alice software to make this text possible. Also, we

would like to take this opportunity to thank Electronic Arts, Inc. for providing their rich set of

graphics which certainly makes Java and Alice programming more interesting. In addition, we

would like to express our gratitude to the National Science Foundation and the Alice ATE grant

team members for their continued support. Words cannot express our gratitude to Wanda Dann

who was abundantly helpful and offered invaluable assistance, encouragement, and guidance.

A heartfelt thanks to those colleagues that helped with revisions to this book: Bob Benavides

(Computer Science Professor at Collin College in Plano, TX), Branden Simbeck (Computer

Information Technology Professor at Community College of Allegheny County), and Rod Farkas

(Computer Information Technology Professor at Community College of Allegheny County).

About the Authors

This book has been a joint effort by a mother and daughter team.

Eileen Wrigley, full-time Professor of Computer Information Technology courses at the

Community College of Allegheny County in Pittsburgh, Pennsylvania brings more than 40 years

of teaching experience to her writing. She earned her B.S. and M.S. degrees from the University

of Pittsburgh in Mathematics and Computer Science.

Dr. Tebring Daly has been teaching full-time in the Computer Science department at Collin

College in Plano, Texas since 2006. She has earned her B.S. and M.S. degrees from the

University of Pittsburgh and Ph.D. from the University of North Texas. Professor Daly has been

teaching Java courses for 9 years.

Approach

This book is designed for students wanting to learn fundamental programming concepts. No

previous programming experience is required. All of the software used in this text are available

to download free of charge. The versions of the software may differ slightly from the versions

used in this text since the versions are constantly being updated.

Acknowledgments

Preface 10 | Page

© Daly & Wrigley

This book will teach you how to program by using Java code. We will use a Java editing tool

called NetBeans1 to help write the code. The environment can be used on a Windows® operating

system2, Apple Macintosh® operating system3 (Mac), or Linux® operating system4.

We are also using a tool called Alice 35, to provide visuals for abstract programming concepts.

This environment works on Windows, Mac, and Linux operating systems. Alice 3 is a drag and

drop environment that can be transferred into Java code in the NetBeans environment as shown

below.

1 Supported by Oracle, http://netbeans.org
2 Microsoft Corporation, http://www.microsoft.com
3 Apple Macintosh Corporation, http://www.apple.com/osx
4 Linux Foundation, http://www.linux.org
5 Developed by Carnegie Mellon University (CMU), Alice, http://www.alice.org

Preface 11 | Page

© Daly & Wrigley

Chapter Breakdown

Preface provides an overview of the text.

Chapter 0 will help you download the required software and introduce you to the Alice 3

environment.

Chapter 1 describes the history of Java, basic programming terminology, and provides hands-on

practice coding in the Alice 3 environment, writing Java code from scratch in NetBeans, and

transferring Alice 3 projects into the NetBeans environment to look at the Java code.

Chapter 2 covers naming rules, creating and using variables in code, using arithmetic statements,

order of operation, shorthand operators, and casting rules.

Chapter 3 explains various ways of formatting output and receiving user inputs. The user is

introduced to import statements.

Chapter 4 shows the user how to modularize programs using procedural methods. The user is

introduced to the Java documentation and the syntax for writing procedural methods.

Chapter 5 expands upon chapter 4 to include methods that return values which are known as

functional methods.

Chapter 6 provides an explanation and practice with relational and logical operators using

conditionals.

Chapter 7 talks about object-oriented terms (encapsulation, inheritance, and polymorphism) and

their use.

Chapter 8 provides an introduction to GUI and the structure for creating basic drawings.

Chapter 9 shows three types of repetition techniques (while, do while, and for loop).

Chapter 10 explains how to use an array to store multiple values of the same type.

Preface 12 | Page

© Daly & Wrigley

Organization

Each chapter is divided into content segments, hands-on exercises, a summary, and review

questions. You should work through the hands-on exercises in each chapter.

The data files needed for the hands-on exercises and assignments can be found at

http://iws.collin.edu/tdaly/book3.

You may want to create an organizational method for keeping track of your files. Each chapter

has several exercises that will walk you through the programming concepts for that chapter.

There is at least one assignment at the end of every chapter. The assignments test your ability to

put the concepts from the chapter into action on your own. Please save the chapter exercises to

the “Exercises” folder and the assignments at the end of each chapter to the “Assignments”

folder so that you don’t get confused.

Instructors: Please email tdaly@collin.edu for solutions, sample syllabi, etc.

http://iws.collin.edu/tdaly/book3
mailto:tdaly@collin.edu

 Install the Java editor

 Install the Alice environment

 Setup the Java editor to work with the Alice environment

 Explain the purpose of Alice

 Setup an Alice scene

Objectives

Getting Started

Chapter 0

Chapter 0 - Getting Started 14 | Page

© Daly & Wrigley

Installing the Java and NetBeans

Java is an object-oriented programming language. We will be writing all of our Java code in

NetBeans. NetBeans is not the only environment for writing Java code, but it is what we will be

using for this text.

You should download the NetBeans and Java SDK (Software Development Kit) bundle. This

bundle will include everything that you will need to write and run Java programs. Please follow

the install directions located on the following website: http://iws.collin.edu/tdaly/book3

Installing the Alice Environment

Alice 3 provides a 3D environment for manipulating objects using drag and drop code segments.

This environment helps to provide visual representations of abstract programming concepts.

Please follow the install directions located on the following website:

http://iws.collin.edu/tdaly/book3

Setting up NetBeans to Work with Alice

There is an Alice 3 plugin file that you will also need to download and add to the NetBeans

environment. Please follow the install directions located at the following website:

http://iws.collin.edu/tdaly/book3

The Alice team at Carnegie Mellon University named the Alice programming software in honor

of Lewis Carroll who wrote Alice's Adventures in Wonderland. Lewis Carroll was able to do

complex mathematics and logic, but he knew that the most important thing was to make things

simple and fascinating to a learner.

Alice makes it easy to create an animation or interactive game. It is designed for beginners who

want to learn object-oriented programming. In Alice, 3-D objects (e.g., people, aliens, animals,

props) are placed in a scene. Then, students drag and drop tiles to create a program to animate

the objects. These tiles correspond closely to statements in Java. Alice allows student to

immediately see how their programs run, enabling them to easily understand the relationship

between the programming statements and the behavior of objects in their program.

Alice 3 is the newest version of the Alice software. This version of the software allows users to

transfer Alice projects into the NetBeans environment to edit the Java code. This text will be

What is Alice?

http://iws.collin.edu/tdaly/book3
http://iws.collin.edu/tdaly/book3
http://iws.collin.edu/tdaly/book3

Chapter 0 - Getting Started 15 | Page

© Daly & Wrigley

using Alice to demonstrate fundamental programming concepts in Java such as objects, methods,

looping, etc. by creating animations.

An Alice scene begins with a template for an initial scene. These templates can be grass, water,

snow, etc. Then, you add various objects to the scene to create the virtual scene that you desire.

Scene Editor

Code Editor

Methods

Controls

Chapter 0 - Getting Started 16 | Page

© Daly & Wrigley

Alice Scene Setup

Objects are added to the scene via the scene editor (Click on Setup Scene button).

There are several choices for selecting objects from the gallery. The hierarchy choice is broken

down by physical makeup. A biped has 2 legs, a flyer has wings, a prop is something that is

inanimate, a quadruped has 4 legs, and a swimmer has fins.

Gallery

Chapter 0 - Getting Started 17 | Page

© Daly & Wrigley

If you want you can also view the objects by theme or by group as shown below. The search

feature is nice if you are looking for a particular object. If you want to add a 2D image to your

world you could add a billboard object (located in the shapes/text tab) and change the image to

an image that you have saved (this works nicely for background images).

The Alice developers have provided a number of 3D models for you to use in your animations.
An Alice 3D model (class) is a blueprint that tells Alice how to create a new object in the
scene. The 3D model provides instructions on how to draw the object, what color it should be,
what parts it should have, its size (height, width, and depth), and many other details. Once you
decide what objects, you would like to have, you will need to click on the class to create an
object of that type. For example, if I want a girl object in my world, I would select the Biped
folder and then the Adult class to create the girl object.

Chapter 0 - Getting Started 18 | Page

© Daly & Wrigley

When you create an object, you will need to give it a name. You can leave the default name or
give it your own name. You cannot give two objects the same name. Be careful when you are
creating objects, if you try and use the name girl more than once, it won’t let you create the new
object.

All objects will initially be placed into the middle of the scene and then can be manipulated to
any position desired. Alternatively, objects can be dragged to any position in the scene.

Alice objects are represented in a 3 dimensional space. Each object has width, height, and depth

as shown below. The height is measured vertically, the width is measured horizontally, and the

depth is measured from front to back.

 Width

 Depth

There are six possible directions in which an object may move – forward, backward, up, down,
left and right. Remember that directions are left and right with respect to the object, not the
camera’s point of view. For example, this girl object can move forward, backward, up (in air),
down (into ground), her left, or her right. The direction an object is facing and where the top of
the object is located (relative to the world) is known as the object’s orientation. In the scene
editor, there are 4 buttons that allow you to manipulate the object.

Height

Chapter 0 - Getting Started 19 | Page

© Daly & Wrigley

The DEFAULT button allows you to move the object and do some rotations. Hold down the left
mouse button and drag the circle to rotate the object. To move the object, hold down the left
mouse button and drag the object wherever you want.

The ROTATION button allows you to do rotations in all directions. Hold down the left mouse
button and drag the appropriate circle to rotate the object.

Chapter 0 - Getting Started 20 | Page

© Daly & Wrigley

The TRANSLATION (move) button allows you to move the object in all directions. Hold down
the left mouse button and drag the arrows to move the object. The arrow at the top of the object
moves the object up and down, the arrow on the right of the object moves the object left and
right, and the arrow in front of the object moves the object forward and backward.

The RESIZE button allows you to resize the object. Hold down the left mouse button and drag
the arrow at the top of the object. The object will resize proportionately.

Chapter 0 - Getting Started 21 | Page

© Daly & Wrigley

All of the Alice models have body parts that can be manipulated with rolls, turns, etc. You
can access the subparts for an object by clicking the part drop down next to the object drop
down.

The best way to see how Alice 3 works is to create a virtual world with objects and animate the

objects in that world. This will be done in the hands-on exercises.

Chapter 0 - Getting Started 22 | Page

© Daly & Wrigley

Hands-on Exercises

Exercise 1: Manipulating the Alice Environment

1. Open up Alice 3. You will need to find the installed Alice 3 folder and double click on

the Alice 3 application file.

2. We are going to add a few objects to the Alice environment so that we can manipulate the

objects and scene to get a better idea of how Alice works.

3. When you open the Alice program, you will be prompted to select a template. You also

have the choice of selecting an old project. We will use this option at the end of this

exercise. Make sure that the Templates tab is selected. Scroll down and select Dirt.

Click OK.

Chapter 0 - Getting Started 23 | Page

© Daly & Wrigley

4. Your screen should look similar to the following. Before we can write any code, we need

to add some objects to our scene. You will need to click on Setup Scene to add objects.

5. The scene setup area will look similar to the following. You currently have 2 objects in

this scene: the camera and ground. You can see the objects in your scene by looking at

the object tree. You can add objects to your scene by using the gallery options.

Object Tree

Gallery

Chapter 0 - Getting Started 24 | Page

© Daly & Wrigley

6. There are several choices for selecting objects from the gallery. Please take a moment to

explore the possibilities.

7. Please click back on the Browse Gallery by Class Hierarchy. Then select Prop Classes

and scroll until you find Cauldron (they are in alphabetical order). We are going to add

this to our scene. Go ahead and click on it. You should be prompted to give this new

object a name. We are going to leave the default name cauldron and click OK. We will

talk about naming objects later in this chapter. Please leave the default names for this

exercise.

Chapter 0 - Getting Started 25 | Page

© Daly & Wrigley

8. You will notice that the cauldron appears in the center of the scene by default. It is also

added to your object tree. The properties for the object are listed on the right pane as

shown below. You can change the location, orientation, color, opacity, size, etc.

9. Let’s change the color of the cauldron to blue. Click the drop down next to Paint and

select Color.BLUE. You cauldron should change color.

Properties

Object Tree

Chapter 0 - Getting Started 26 | Page

© Daly & Wrigley

10. Next, we want to move the cauldron to the left side of the scene. The ring around the

cauldron indicates that you can rotate the cauldron 360 degrees (this is the default

option). I do not want to rotate the cauldron since it would look the same all the way

around. I want to move it. To move an object, make sure that the object is selected from

the object tree or from the drop down on the properties pane as shown below and select

Translation.

11. You will notice that the handle style changes to arrows. The arrow on top of the cauldron

will move the cauldron up and down if you hold down your left mouse button on the

arrow and drag up or down. The arrow to the right of the cauldron, will move the

cauldron to the right or left. The front arrow will move the cauldron forwards and

backwards. Try moving the cauldron to the left and forward.

Chapter 0 - Getting Started 27 | Page

© Daly & Wrigley

12. If you move the cauldron up or down, it will be off the ground. Go ahead and try it. You

don’t have to worry about messing up the environment because you can undo. If your

cauldron is in the ground or floating in the air, click the undo button as shown below.

13. Do not resize the cauldron. We are going to add the cauldron lid and if we resize the

cauldon, it won’t fit and we will have to resize the cauldron lid to fit. We will practice

with rotating and resizing in the next exercise.

14. Next, let’s add the cauldron lid. See if you can find it. You can try using the search since

we know the object that we want to add. Click on the CauldronLid to add a cauldron lid

to your scene. Leave the default name for the object.

Chapter 0 - Getting Started 28 | Page

© Daly & Wrigley

15. The cauldron lid is added to our scene, but it is on the ground. We could move the

cauldron up, to the left, and forward to get it on top of the cauldron, but there is an easier

way. There is a One Shot drop down that will allow us to move the cauldron lid onto the

cauldron without having to move it ourselves. Make sure the cauldron lid is selected and

right click on the cauldron lid from the object tree. Choose procedures, place, above,

and select cauldron. Be careful with the cascading menus when you are selecting

options. You can think of procedures as actions.

16. The cauldron lid should now be on top of the cauldron, but if we move the cauldron the

lid will not move with it. To make the lid move with the cauldron, we need to change the

vehicle property of the lid to the cauldron. Make sure that the cauldron lid is selected and

change the vehicle property (makes one object move in conjunction with the other

object) to cauldron as shown below. Try moving the cauldron, does the lid move with it?

Chapter 0 - Getting Started 29 | Page

© Daly & Wrigley

17. We are going to save our project and continue our work in next exercise. To save the

project, you should click on File, Save As. Name the project PracticeWithAlice. Please

get in the habit of capitalizing the first letter of every word in your filename and do not

use space when naming your files. You should save this file in your Chapter0Exercises

folder. Exit Alice by clicking File, Exit.

Chapter 0 - Getting Started 30 | Page

© Daly & Wrigley

Exercise 2: Manipulating the Alice Environment – Part 2

1. Open up Alice 3. You will need to find the installed Alice 3 folder and double click on

the Alice 3 application file.

2. Click on the File System tab and choose browse… You will need to locate your

PracticeWithAlice file and click OK. (Note: Alice files have an .a3p file extension. If

you double click on this file, it will not open in Alice. Unless you create a file association,

you will need to open all of your Alice projects from the Alice software.)

3. You should have a cauldron and a cauldron lid in your scene from exercise 1. Click

Scene Setup so that we can practice some more with manipulating objects.

Chapter 0 - Getting Started 31 | Page

© Daly & Wrigley

4. Let’s add a witch to the scene. There are multiple ways to find her. You can search for

her, click on hierarchy and biped class, click on theme and fantasy, or click on group and

characters. Instead of clicking on the witch to add her to the scene, hold down your left

mouse button on the new Witch() and drag onto the scene and release where you want

her. You will notice a yellow bounding box on the screen indicating where she is going to

appear. Leave the default name for her. If this method of adding objects does not work

for you, then you can add the object by clicking on it and then moving it once it is added

to the scene.

5. Make sure that the witch is selected on your scene and then click on resize. You should

notice an arrow above the witch’s head. This will resize the witch proportionally if you

hold down your left mouse button and drag up or down. Make her bigger. Whatever you

think looks good.

Chapter 0 - Getting Started 32 | Page

© Daly & Wrigley

6. Now, let’s rotate her. Click on rotation. The up and down yellow lines will rotate the

witch forwards and backwards if you hold down your left mouse button and drag. The

yellow circle on the bottom of the witch will rotate the witch 360 degrees. Hold down

your left mouse button on the bottom circle and drag to the left. Rotate the witch so that

she is facing the cauldron.

7. Now, we are going to practice with the camera movements. The first set of arrows on the

left will move the scene up, down, left, and right. The second set of arrows will move the

witch forwards and backwards. The last set of arrows will adjust the scene up and down

(more or less sky). Please try out each of the camera arrows.

8. Please take some time to add more objects and manipulate those objects. Practicing with

the environemnt is the best way to get acquainted with it. Save your work.

Chapter 0 - Getting Started 33 | Page

© Daly & Wrigley

Exercise 3: Alice in Wonderland Mad Tea Party Scene Setup
(ongoing exercise)

1. Open up Alice 3. You will need to find the installed Alice 3 folder and double click on

the Alice 3 application file. The first step in programming is understanding the problem.

We would like to create a trimmed version of the Alice in Wonderland unbirthday tea

party. Once you understand the problem, you setup the scene and create a storyboard for

animating the scene.

2. Our goal for the scene setup is to have the following characters: Alice, Mad Hatter, and

the March Hare. We will also add some objects to make the scene more interesting: a

table, chairs, a tea pot, tea cups, and a birthday cake. When we are finished it should look

similar to the following:

3. Select the wonderland template:

Chapter 0 - Getting Started 34 | Page

© Daly & Wrigley

4. Select File from the menu, then Save As. Save this file as TeaParty. Please get in the

habit of capitalizing the first letter of every word in your filename and do not use spaces

when naming your files. You should save your work often. You can click Save from the

File menu from this point on. You should save this file in your Chapter0Exercises

folder.

5. Click on Setup Scene button.

6. We are going to add a table to the scene for the characters to gather around. There is a tea

table specifically designed for Alice in Wonderland. Click on the tab called Browse

Gallery By Class Hierarchy. Click on the Prop classes category.

7. Scroll to the end (they are in alphabetical order) until you see the TeaTable class. You

could have used the Search Gallery tab to find the table as well.

Chapter 0 - Getting Started 35 | Page

© Daly & Wrigley

8. Click on the TeaTable class to add a tea table to your world or hold down your left

mouse button and drag this object to wherever you would like to place it in your scene. If

you choose to click on the TeaTable class, the new object will be placed automatically in

the center of the scene.

9. When you click on the class it will ask you for a name for the object. You can leave the

name teaTable or rename if you want. Do not put spaces in your object name and the first

letter of your object name should begin with a lowercase letter and the first letter of the

second word should be a capital letter. Object names begin with a lowercase letter; we

will talk more about this in the next chapter.

10. Next, we are going to add a chair. Now we can test out the search feature in Alice by

typing chair into the search box. You will have a list of all the chair models. Please

choose the chair that you like.

Chapter 0 - Getting Started 36 | Page

© Daly & Wrigley

11. Drag the chair that you want onto the scene where you want it by holding down the left

mouse button and dragging from the class that you are choosing to add. You will see a

yellow bounding box that shows you were your new object will be placed. When you get

the object where you want it, release and it will ask you for a name for the object.

You should name this object something simple. Let’s name it chair.

12. We should resize the chair so that it matches the size of the table. To do this, you will

need to select the chair and then click on the resize button from the handle style choices.

When you click on the button, an arrow will appear above the chair. Holding down your

left mouse button on the arrow and move your mouse up and down to resize the chair.

Chapter 0 - Getting Started 37 | Page

© Daly & Wrigley

13. To rotate the chair, click on the rotation button from the handle style choices. If you hold

down the left mouse button on the bottom ring and drag to the right and left, it will spin

the chair around so that you can have it face the table.

14. To move the chair, click on the translation button from the handle style choices. If you

hold down your left mouse button on the arrow on top of the chair and drag up and down,

the chair will move up and down. The arrow in the front will move the chair forward and

backward. The arrow to the right will move the chair left and right.

Chapter 0 - Getting Started 38 | Page

© Daly & Wrigley

15. Add 3 more chairs to the scene around the table. Be careful not to give the chairs the

same name. You will see the following error if you try to name your objects the same

name. You can call the other chairs: chair2, chair3, and chair4. Do not put spaces in your

names. The Alice software will not allow you to name your objects with spaces and this

is because the Java language does not allow you to have spaces when naming.

16. It should look similar to the following:

Chapter 0 - Getting Started 39 | Page

© Daly & Wrigley

17. Next, we need to add some teacups and a teapot onto the table. If you search for tea in

the gallery, you will be given the teapot, teacups, saucers, etc. I would like to start with

the teapot. When you create the teapot, you can use the default name. We can play with

trying to get this teapot onto the table, but this would take a while and there is an easier

way. If you right click on the teapot, select procedures, teapot place…, above, and

teaTable, it will place the teapot on top of the table for you.

18. Add a few teacups onto the table and adjust them how you want them. Be careful not to

give 2 teacups the same name.

Chapter 0 - Getting Started 40 | Page

© Daly & Wrigley

19. Add a birthday cake onto the table and readjust the items on the table. It should look

similar to the following.

20. Next, we are going to add the characters. The characters can be found in the biped folder

in the gallery. Let’s add the March Hare first. Place him directly in front of one of the

chairs. It doesn’t matter which chair you choose. You will need to rotate him so that he

lined up with the chair. We are going to make him sit in the chair.

Chapter 0 - Getting Started 41 | Page

© Daly & Wrigley

21. To move the marchHare’s joints, we will need to select the marchHare and drop down his

subparts as shown below. Choose the hare’s right hip.

Now, we need to select ONE SHOT, procedures, marchHare.getRightHip.turn…,

BACKWARD, and 0.25

Chapter 0 - Getting Started 42 | Page

© Daly & Wrigley

22. Repeat this for the leftHip.

23. Select the marchHare’s rightKnee, then select one shots, procedures, turn, forward,

and 0.25.

24. Repeat this for the leftKnee. You may need to move the entire marchHare back and up

to get him onto the chair.

25. Now, let’s add the madHatter to the scene. Place him next to the marchHare. It doesn’t

matter which side he is on. You may need to resize, rotate, and move him to get the scene

to look the way you want.

Chapter 0 - Getting Started 43 | Page

© Daly & Wrigley

26. Finally, we are going to add Alice to the scene. We will need to create Alice using the

Child class in the biped classes. The Child class allows you to select male or female, the

skin tone, the attire, the hair color, eye color, and shape of the person. Create a girl that

looks like Alice and name her alice. Normally you would capitalize a name, but when we

name objects, we don’t capitalize the object names.

27. Place alice off to the side of the animation window looking at the tea party as shown

below.

28. We are finished with the scene setup. If you want to add some wonderland trees or other

objects to your scene, feel free.

29. We have not added any code to our projects. This chapter was all about working with

scene setup. We will be adding code in chapter 1.

30. Save this program and exit Alice.

Chapter 0 - Getting Started 44 | Page

© Daly & Wrigley

Exercise 4: Alice Card Game Scene Setup (ongoing exercise)

1. Open up Alice 3. You will need to find the installed Alice 3 folder and double click on the

Alice 3 application file.

2. The first step in programming is understanding the problem. We would like to create a

trimmed version of a card game. We will have 2 players that each get dealt a playing card.

The player with the highest card wins. We will be gradually adding to this project

throughout the text. In this project, we are going to set up the scene for the card game. We

will need to add the playing cards to the scene and we will need cones to set the locations

for our playing cards so that it looks as if the cards are being dealt. We will want to add

text to the screen that displays each player, who won, and the score for each player. The

castle wall will just act as a background for our game (it is not necessary).

3. Our goal for the scene setup is to have a castle background with the following characters:

10 Alice Playing Cards, Player 1 text sign, Player 2 text sign, 2 WIN signs (one for each

player), 2 scores (one for each player). When we are finished it should look similar to the

following:

Chapter 0 - Getting Started 45 | Page

© Daly & Wrigley

4. Select the grass template:

5. Select File from the menu, then Save As. Save this file as CardGame. Please get in the

habit of capitalizing the first letter of every word in your filename and do not use spaces

when naming your files. You should save your work often. You can click Save from the

File menu from this point on. You should save this file in your Chapter0Exercises folder.

6. Click on Setup Scene button.

7. To add a castle wall to the background, click on the tab called Browse Gallery By

Theme. Then click on fantasy.

Chapter 0 - Getting Started 46 | Page

© Daly & Wrigley

8. Next, choose castle.

9. Then choose new CastleWall (last choice).

10. Then, choose the first choice for the castle walls.

11. You can use the default name given as castleWall and click on OK. Your screen should

look similar to the following:

Chapter 0 - Getting Started 47 | Page

© Daly & Wrigley

12. Click on the castle wall choice at bottom of screen again so that you will have 2 castle

walls. It will name this piece as castleWall2 and that is fine. Click on OK. It will put this

piece of the wall right over top of the last piece that was already on the screen.

13. You can use the handles to pick this piece up and move it to the left until it looks like one

continuous wall. Another way is to move it using the X Y Z axis positions listed on the

far right of your scene setup screen. Change the x location to be 5.20 and press ENTER

key and it will move it to the left.

Chapter 0 - Getting Started 48 | Page

© Daly & Wrigley

14. The screen should look similar to the following:

15. The background for the Card Game is now set up. Now, player signs are needed in the

upper corners. These are text boxes. Choose the Shapes/Text tab and select new

TextModel and drag it onto the grass.

16. Name the text model as player1Sign. By default, the color is white and the opacity is 1

(visible). Change the value by clicking in value and choosing custom textString and then

typing in Player 1 (with a space). Your screen should look as follows and then click OK.

Chapter 0 - Getting Started 49 | Page

© Daly & Wrigley

17. A text box will appear quite large in the grass as follows (if you cannot see the text, do not

worry it will be fixed in the next step):

18. To place this sign in upper left corner it will need to be resized and moved. One way is to

move and resize the object by using arrows, etc. Another way is to use the right side of the

screen to place it at a specific location by using the x, y, and z etc. Change the width to be

1 and press ENTER key. Change the x, y, and z to be as follows (make sure to press

ENTER key after making each entry):

19. The screen should appear as follows:

Chapter 0 - Getting Started 50 | Page

© Daly & Wrigley

20. The Player 2 sign will be done the same way. Drag the new TextModel into the grass.

Name it player2Sign and change the custom testString to be Player 2.

21. The player2Sign comes in large. The width and location will need to be adjusted. Change

the width and the x, y, and z to be as follows (make sure to press ENTER key after

making each entry):

Chapter 0 - Getting Started 51 | Page

© Daly & Wrigley

22. Your screen should look as follows:

23. The player 1 and 2 signs are headings. The WIN signs and scores will be displayed

underneath of these. They will also be Text Models. The first WIN sign will appear

directly under the Player 1 sign. Choose the TextModel again and drag it to the grass area.

Fill in the box with a name of winPlayer1Sign and custom textString value as WIN !!

Change the width and the positions as follows:

Chapter 0 - Getting Started 52 | Page

© Daly & Wrigley

24. You will do the same thing for winPlayer2Sign. It will be named winPlayer2Sign and the

textString value will be WIN!! Its width will be 1.0. Its position will be x of -1.5, y of

1.0, and z of -3.0. Make sure you press ENTER after each entry. If you have done

everything correctly, your screen will look as follows:

25. Below these signs will be the SCORE signs. To set these up, drag another TextModel to

the grass. Name it player1ScoreSign. The custom textString value will be Score: 0. The

width is 1.0. The x position is 1.5, y position is 0.5, and z position is -3.0. Your screen

should look as follows:

Chapter 0 - Getting Started 53 | Page

© Daly & Wrigley

26. To do the second SCORE sign on right side, you will drag a TextModel to the grass

again. Name the object as player2ScoreSign and make the custom textString as Score: 0.

Change the width to be 1.0 and press ENTER key. Change the x position to be -1.5, y

position to be 0.5, and z position to be -3.0. Your screen should look as follows:

27. Two placement markers will be needed as markers for the playing cards. Cones will be

used for these markers. Two small cones will be placed towards the middle of the scene

and the cards will be dealt to these cone markers. From the Shape area, drag the cone to

the grass. Give it the name of cone1. Change the width to be 0.25. Change the x position

to be 0.5. Change the y position to be 0.0. Change the z position to be -3.0. This could

have also been done by using the arrows and lining up the positions by trial and error.

28. Now, place the second cone with a name of cone2, width of 0.25, x position of -0.5, y

position of 0.0, and z position of -3.0. The screen should look as follows:

Chapter 0 - Getting Started 54 | Page

© Daly & Wrigley

29. Another marker needs to be placed far off the scene. Since camera movement will be

involved, a marker will be placed to remember this camera position so we can return to

this camera angle later. On the right side of screen by the sizes and locations is a section

called Camera Markers.

Click on the triangle (expand) to open the Camera Markers part of the screen. Choose the

Add Camera Marker… button. Name this camera marker as originalCamera and make

it RED. Now, we will be able to return to this view any time we want. (It is good idea to

have an original camera marker for any scene you develop.)

30. Click on the first camera arrow at bottom of scene.

Choose the LEFT arrow. Your screen should scroll to the left. The goal is to scroll far

enough to the left to place a marker to the left of the wall. Create a cone named

coneOutside. Make the length of it 0.25. Make the x position as 8.0, y position as 0.0, and

z position as -3.0. Each of the playing cards will be placed at this same position. This way

each of the cards will be at the exact same location and they will be off the original scene.

31. To place the first card, we will click on the tab that is Browse Gallery by Class

Hierarchy and choose the Biped Classes

Chapter 0 - Getting Started 55 | Page

© Daly & Wrigley

32. Find new PlayingCard.

33. Scroll right and choose new PlayingCard (ONE 1) and drag it to the screen. Name this

card playingCard1. Change the width to be 0.5. Click on the one shots drop down (or

right click on the object). Choose procedures, then moveTo, and then choose

coneOutside.

Chapter 0 - Getting Started 56 | Page

© Daly & Wrigley

34. The first playing card should now be placed exactly on the coneOutside. Now, nine more

playing cards will be placed in this exact same location and the exact same size. To place

the second card, scroll to the right of the playing cards and find newPlayingCard

(TWO2). Drag it to the grass. It will automatically name it playingCard2. Change the

width to be 0.5 and press ENTER key. Use the one shots to place playingCard2 on the

coneOutside as you did in the previous step. You will continue to place all ten cards on the

screen in the grass, size each one as a width of 0.5 and the use one shots to move each one

to the coneOutside. When all are done, your screen should look as follows:

If done correctly, the object tree on left should have playingCard1 to playingCard10 and

all of the cards should be sitting on top of each other and on top of our coneOutside.

35. To return to the original camera view, change object to camera and then choose one

shots, procedures, moveTo, and orignalCamera.

Chapter 0 - Getting Started 57 | Page

© Daly & Wrigley

36. In later chapters, you will have these cards come on to the screen, determine which player

is the winner, have the WIN sign flash, have the score updated, etc. The scene is now

complete and should look as follows:

37. Make sure to save this final version as CardGame in the Chapter0Exercises folder.

Chapter 0 - Getting Started 58 | Page

© Daly & Wrigley

Summary

 Alice is an innovative 3D programming environment that makes it easy to create an
animation or interactive game. The team named the system “Alice” in honor of Lewis
Carroll who wrote Alice’s Adventures in Wonderland.

 An Alice virtual world begins with a template for an initial scene. These templates can be
grass, water, snow, etc.

 An Alice 3D model is like a blueprint that tells Alice how to create a new object in the
scene. The 3D model provides instructions on how to draw the object, what color it
should be, what parts it should have, its size (height, width, and depth), and many other
details.

 When you choose to place an Alice object into your world, Alice will create an object
(instance) of that class in your world and ask you to name that object.

 When naming an object (instance) of a class, you should begin the name with a lowercase
letter. If the name will have multiple words in it, each successive word with then begin
with a capital letter. An example would be myLittleSnowman.

 Objects from the galleries are added to the scene via the SCENE EDITOR (a click on
Setup Scene button).

 Objects in an Alice world are three dimensional. Each object has width, height, and

depth.

 There are six possible directions in which an object may move – forward, backward, up,

down, left and right.

 Each object in Alice has a unique “center.” An object’s center is used for measuring

distance to another object and for determining its position in the world.

Chapter 0 - Getting Started 59 | Page

© Daly & Wrigley

Review Questions

1. Alice was named in honor of Lewis Carroll.

a. True

b. False

2. An Alice 3D model is like a blueprint that tells Alice how to create a new object in the

scene.

a. True

b. False

3. Once an object is placed into a scene, it can’t be manipulated by moving, rotating, etc.

a. True

b. False

4. If you were to name an object (instance) of an Airplane class, which of the following

names would be proper?

a. MyAirplane

b. my airplane

c. myairplane

d. myAirplane

5. You can have more than one object of the same class in the same world?

a. True

b. False

Solutions: 1) a 2) a 3) b 4) d 5) a

Chapter 0 - Getting Started 60 | Page

© Daly & Wrigley

Assignments

0-1 Cola Commercial: Create a scene in Alice that could be used for a cola commercial.

You must have at least 7 appropriately placed objects in your scene. Name this project

ColaCommercial.

0-2 Greeting Card: Create a scene in Alice that could be used for a greeting card. You

must have at least 7 appropriately placed objects in your scene. Name this project

GreetingCard.

0-3 Animation: Create a scene in Alice that could be used for a short animation. You must

have at least 7 appropriately placed objects in your scene. Name this project as

Animation.

0-4 Card Game Adjusted: Adjust exercise 4 in this chapter to have at least 7 more

appropriate scenery items. Name the project as MyCardGame.

 Explain the difference between high and low level programming languages

 Describe the history of how the Java programming language was started

 Briefly describe the following:

o Object Oriented Programming

o Platform-Independence

o Garbage Collection

o Java Development Kit

 Explain the difference between applets, applications, and servlets

 Explain the difference between Java and JavaScript

 Compile and execute a Java program

 Debug errors

 Identify and fix compiler errors

Objectives

Coding Introduction

Chapter 1

Chapter 1 – Coding Introduction 62 | Page

© Daly & Wrigley

Introduction to Programming

A computer program is a way to tell a computer what to do. When you want a computer to

perform a task, you must give it line-by-line instructions on how to accomplish that task. These

line-by-line instructions are called a computer program.

The computer stores information based on electronic signals, referred to as binary. A bit (binary

digit), the smallest unit of information storage, is represented by either an on (1) or off (0) signal

inside the computer. One byte (a character such as the letter “A” on the keyboard) uses eight

bits.

There are many different computer programming languages available and the choice of what

programming language to use will depend upon the task for the computer to accomplish. A

programming language that is written at the very low technical circuitry level of the computer is

called a low-level programming language. Some examples of low-level programming

languages are machine language and assembler language. Machine language is composed of

binary 1's and 0's and is not intended for humans to read. Machine language varies from

computer to computer. The machine language for a PC is entirely different from machine

language for Mac. A computer only understands programs (without any conversion) written in its

machine language (binary).

High-level programming languages allow programmers to write programs using English terms.

Computers do not understand high-level languages directly so this means that computer

programs written in a high-level language must be converted to machine language by an

interpreter or compiler. Some high-level computer programming languages available are: C++,

Visual Basic.NET, C#, and Java. Each of these programming languages is best-suited to a certain

type of computer or problem such as mainframes, business, games and/or science.

Computer languages each have their own syntax, or rules of the language. For instance, in a

high-level programming language the verb to display information might be "write", "print",

"show", etc. In a low-level programming language the verb to display information might be a

code of "101011" in binary. Java is a high-level programming language with a specific

vocabulary and specific rules for using that vocabulary.

What is Java?

History of Java

In 1990, James Gosling was given the task of creating programs to control consumer electronics

(TVs, VCRs, toasters, etc.). Gosling and his team at Sun Microsystems started designing their

software using C++. The team found that C++ was not suitable for the projects they had in mind.

They ran into trouble with complicated aspects of C++ such as multiple inheritances of classes

and with program bugs such as memory leaks. So, Gosling created a simplified computer

Chapter 1 – Coding Introduction 63 | Page

© Daly & Wrigley

language that would avoid all the problems he had with C++. Thus, a new programming

language named Oak (after a tree outside his window) was born.

Oak was first used in something called the Green project, which was a control system for use in

the home using a hand-held computer called Star Seven. Oak was then used in another project

which involved video-on-demand. Neither project ever made it to the public eye, but Oak gained

some recognition. Sun discovered that the name Oak was already copyrighted. After going out

for coffee one day, they named their new powerful language Java.

In 1993, the Java team realized that the Java language they had developed would be perfect for

web page programming. The team came up with the concept of web applets, small programs that

could be included in web pages, and created a complete web browser called HotJava (originally

called Webrunner) that demonstrated the language's power.

In the second quarter of 1995, Sun Microsystems officially announced Java. The "new"

language was quickly embraced as a powerful tool for developing Internet applications. Netscape

Communications added support for Java to its Netscape Navigator 2.0. Java became an instant

"hit" and also made the Netscape browser very popular. Other Internet software developers such

as Microsoft eventually followed suit and reluctantly included Java in their browsers. These

browsers were called "Java-enabled". Java-enabled meant that the browser could download and

play Java classes (applets) on the user’s system. (Applets appear in a web page much the same

way as images do, but unlike images, applets can be dynamic and interactive.)

Java Capabilities

 Java is easier than C++. Although Java looks similar to C and C++, most of the

complex parts such as pointers, multiple inheritance, and memory management have been

excluded from Java.

 Java is an Object Oriented Programming (OOP) language, which allows you to

create flexible, modular programs and reuse code. OOP is based on the theory that

everything in the world can be modeled as an object. An object has attributes (data) and

behavior (methods).

 Java is platform-independent. Platform-independence is a program’s capability of

moving easily from one computer system to another. Java slogan is "You can write

once and run anywhere." If you write a game using the Java programming language,

theoretically, you should be able to run that game on a PC, Linux, or Mac.

 Java supports the Internet by enabling people to write interactive programs for the

Internet. Java applets can easily be invoked from web browsers to provide valuable and

spectacular web pages.

Chapter 1 – Coding Introduction 64 | Page

© Daly & Wrigley

 Java is general purpose. Although used mainly for writing internet applications,

Java is a truly general-purpose language. Almost anything that most other

computer programming languages such as C++ or Visual Basic can do, Java can

also do. Java programs can be applets for the Internet or standalone applications

for local PCs.

o Applets appear in a web page much in the same way as images do, but

unlike images, applets are dynamic and interactive. Applets can be used to

create animations, games, ecommerce, etc.

o Applications are more general programs written in the Java language.

Applications don't need a browser. The Java language can be used to create

programs, like those made in other computer languages.

o Servlets are programs that respond to requests from clients.

 Java is secure. Since the Java program is isolated from the native operating system of a

computer, the Java program is insulated from the particular hardware on which it is run.

Because of this insulation, the Java Virtual Machine provides security against intruders

getting at your computer's hardware through the operating system.

 Java programs can contain multiple threads of execution, which enables programs to

handle several tasks simultaneously. For example, a multi-threaded program can render

an animation on the screen in one thread while continuing to accept keyboard input from

the user in the main thread. All applications have at least one thread.

 Java has multimedia capabilities of graphics, images, animations, audio and videos. It

also runs on networks.

 Java programs do their own garbage collection, which means that programs are not

required to delete objects that they allocate to memory. This relieves programmers of

virtually all memory-management problems.

 Java programs are reliable and robust. When a serious error is discovered, Java

programs create an exception. This exception can be captured and managed by the

program and then terminated gracefully.

 Java vs. JavaScript. The Java language was developed by Sun MicroSystems

and is full programming language that can be used in applications or as applets on

the Internet. JavaScript was developed by Netscape as a scripting language to be

used only in HTML web pages.

Chapter 1 – Coding Introduction 65 | Page

© Daly & Wrigley

Programming Process

Develop an algorithm: Think about the problem before coding. Create a flowchart, storyboard,

or pseudo code to represent a solution to the problem.

Create Project: Create a new project in NetBeans. The NetBeans environment is known as our

IDE (Integrated Development Environment). There are many IDEs that can be downloaded free

of charge, but NetBeans provides many features that will be helpful to us for this course. In

NetBeans, when you create a project, it creates a folder structure. The following is an example of

a folder structure for a HelloWorld project created in NetBeans.

Code: Type the Java code. As you type, NetBeans checks your program for syntax errors. Red

lines indicate errors in your code. The Java code (HelloWorld.java) for the HelloWorld project

will be in the src folder in the folder structure above.

Compile: When you are finished typing the program, you will need to do a final compile of the

program (also known as building). The Java compiler checks your code for errors. If it compiles

with no syntax errors, it creates a class file (bytecode) that will be capable of running on

different operating systems. Bytecode are a set of instructions that look a lot like machine code,

but are not specific to any one processor. Compiling the HelloWorld.java creates the

HelloWorld.class file located in the build folder inside the classes subfolder in the folder

structure above.

Run: These bytecode are then fed to a JVM (Java Virtual Machine) where they are interpreted

and executed.

The JDK (Java Development Kit) includes the Java library (code), JVM, as well as the Java

compiler. The version of NetBeans that you installed included the JDK. Oracle owns Java and

it is constantly releasing new versions of the JDK. It is good to know what JDK you are using

so that you know what Java code is available to you. We will talk more about the Java library

and JDK in a later chapter. You can check to see what version of the JDK that you have by

clicking Help from the menu and then About in the NetBeans environment. The JDK version

shown below is 1.8. You do not need to put the update number which is the number after the

underscore.

Chapter 1 – Coding Introduction 66 | Page

© Daly & Wrigley

Java Program – HelloWorld.java

Java Class File – HelloWorld.class Errors Displayed in Output Window

Java Virtual Machine – Program Execution Fix program errors

NO YES
Java

Compiler

(Syntax

Errors?)

Chapter 1 – Coding Introduction 67 | Page

© Daly & Wrigley

Documentation

Comments are used to document code so that other people reading our code can understand our

logic. Comments are useful for adding extra information to our programs that we don’t

necessarily want to show up in the output of our program such as: author, date, JDK used,

program description, etc. Also, it is a good idea to comment your programs extensively when

you are just starting out so that you have well-documented examples.

A single line comment is represented by two forward slashes. This comment will continue until

the end of the line. This type of comment can be placed on a line by itself or it can be placed on

the end of a line of code to describe the code. The following are examples of a single line

comments.

//Single Line Comment

System.out.println(“Hello World”); //Prints "Hello World" to the output window

A multi-line comment is represented by a forward slash followed by an asterisk and an asterisk

followed by a forward slash to end the multi-line comment. The following is an example of a

multi-line comment.

/* Multi-Line

 Comment */

You can even be creative and separate your multi-line comments from your code by adding

asterisks after the first forward slash and before the last forward slash.

/**

 * Multi-Line Comment

 * Typical Java Documentation

 */

Note: Java documentation will be explained in a later chapter.

Alice Comments

Chapter 1 – Coding Introduction 68 | Page

© Daly & Wrigley

Program Errors

There are 3 different types of programming errors: compiler, run-time, and logic errors.

 Syntax errors are caused when the user writes code that is not understood by the

compiler. A syntax error can be caused by incorrect capitalization or spelling

mistakes. The compiler informs the user of a syntax error by displaying an error

message. Typing “Public Class” instead of “public class” would result in a syntax

error. NetBeans checks for errors as you type. If you see a red exclamation point

before a line of code, you can hover over it with your mouse to see the error.

This line of code should have been: System.out.println("Hello World");

 Run-time errors are caused by invalid data. Run-time errors do not affect the

compilation of your program thus the program will compile and execute, but it

may crash or hang after execution. If you try to divide 12 by 0 you would get a

run-time error because you cannot divide by 0.

 Logic errors (also known as human error) are caused by mistakes that do not

defy the rules of the language and do not crash or hang the program, but instead

yield incorrect results. The user may not understand the problem that the program

is trying to solve and therefore uses the wrong equation, wrong strategy, etc. An

example of a logic error would be moving left instead of right.

Chapter 1 – Coding Introduction 69 | Page

© Daly & Wrigley

Hands-on Exercises

Exercise 1: Alice in Wonderland Tea Party Coding (ongoing
exercise)

1. Open up Alice 3.

2. Open the TeaParty file that was created in the Chapter0Exercises folder. Click on

the File System tab, then choose browse… and locate your file. Select the file and click

the Open button and then the OK button.

3. Before writing the code for our animation, we should first create a storyboard of what we

wish to accomplish.

 Scene opens with the Mad Hatter and the March Hare gathered around a table with

tea and a birthday cake

 The unbirthday song plays

 Alice approaches the table

 Alice tells the characters that she enjoyed their singing

 They tell her that nobody ever compliments their singing and insist that she has a

cup of tea

 She apologizes for interrupting their birthday party

 They explain that it isn’t their birthday; it is their “unbirthday”

 Alice then asks them to explain an “unbirthday”

 They then tell her that everyone has 364 “unbirthdays” each year

 Alice realizes that it is her “unbirthday” too

Chapter 1 – Coding Introduction 70 | Page

© Daly & Wrigley

4. We need to save the new version of this file in the Chapter1Exercises folder instead of

the Chapter0Exercises folder. Click on File from the menu, then Save As, locate the

Chapter1Exercises folder, and save this file as TeaParty.

5. Drag the //comment block to the editor and enter your comments. You need to put your

name, the date, and a description of the program in comments at the top of all of your

programs.

6. Click on the this, make sure that the Procedures tab is selected, drag the playAudio

method to the editor, select Import Audio, use the Unbirthday Song file (located in

your Data_Files folder: http://iws.collin.edu/tdaly/book2/). Procedural methods are

actions that objects can do. The word “this” refers to the scene and we are telling the

scene to play the audio.

7. We need to test the program by clicking the Run button to play the animation. You

should hear the song play but nothing else happens yet.

http://iws.collin.edu/tdaly/book2/

Chapter 1 – Coding Introduction 71 | Page

© Daly & Wrigley

8. Next, we will select alice, make sure that the procedures tab is selected, and drag the

moveToward method onto the editor underneath the playAudio method. When you

release the mouse, you will be prompted to select the target that you want alice to move

toward and the amount that you want her to move. Select marchHare as the target and

2.0 as the amount. If you wanted a number that isn’t on the list, you would select Custom

DecimalNumber and type in your own number. These choices (target and amount) are

known as arguments in programming. Run the animation to see if alice moves toward the

marchHare; you will have to wait until the song finishes to see her move. The program

happens in order. The next line doesn’t execute until the previous line is finished.

9. If you don’t want to wait for the song to finish every time you want to test out your

animation, you can disable lines of code and enable them later. To do this, you would

Chapter 1 – Coding Introduction 72 | Page

© Daly & Wrigley

need to right click on the playAudio line and uncheck Is Enabled. You will see the line

will now have gray lines over it.

10. Now, we want alice to praise their singing. You will need to select alice and then drag the

say method onto the editor underneath the moveToward method. When you do this, you

will be prompted (argument) to enter the text of what you want alice to say. You should

select Custom TextString… and then enter I enjoyed your singing. You can select add

detail if you want to make adjustments such as text color, speech bubble color, outline

color, or the duration that the bubble stays on the screen. You can leave the default

settings if you want. The duration is defaulted to 1 second.

11. Create the following dialog between the characters:

madHatter – We never get compliments, you must have a cup of tea.

alice – Sorry for interrupting your birthday party.

marchHare – This is an unbirthday party.

alice – Unbirthday?

madHatter - Statistics prove, prove that you've got one birthday. One birthday every

year, but there are 364 unbirthdays. That’s exactly why we are gathered here to cheer.

alice – Well I guess it’s my unbirthday too!

Chapter 1 – Coding Introduction 73 | Page

© Daly & Wrigley

12. Have Alice joyously jump up and down at the end. If you want her to jump at a faster

pace, you can change the duration to be 0.5 seconds instead of 1 second (Click the add

detail drop down to change the duration.

13. To test the full program with the song, you will need to enable the playAudio method.

Right click on the playAudio line and check Is Enabled. The grey lines through the

playAudio method should disappear.

14. Challenge: Make this your own by adjusting it how you want. For example, you may

want to challenge yourself and make the Mad Hatter and the March Hare dance to the

unbirthday song. This would require that you use the Do Together block to make the

dancing happen while the song is playing.

15. Save your work and exit Alice.

Chapter 1 – Coding Introduction 74 | Page

© Daly & Wrigley

Exercise 2: Compiling and Executing a Java Program

1. Open up the NetBeans environment.

2. You can close the Start Page. The tutorials provided in the Start Page can be confusing

for a first timer.

3. Select the File menu and then choose New Project. Then choose Java Application as

shown below.

Chapter 1 – Coding Introduction 75 | Page

© Daly & Wrigley

4. Click Next. Name your NetBeans project, select the location of where you would like to

save your file, give your file (Main Class) a name (make this name the same as your

project name), and click finish. Although it is not necessary, we are going to name our

projects and Java files (main class) have the same name. Therefore, make sure that the

top and bottom boxes have the same name. NetBeans automatically will try to name your

file (main class) helloworld.HelloWorld. Erase the helloworld. that NetBeans inserts

before your file name. Make sure it looks like the following screenshot. Capitalization is

important.

Project the name HelloWorld. (no spaces)

Main class name of HelloWorld (no spaces)

Select the Location of where you would like to save your NetBeans project

5. If line numbers are not showing, click View from the menu, then Show Line Numbers.

Chapter 1 – Coding Introduction 76 | Page

© Daly & Wrigley

6. Your project should look as follows. HelloWorld.java is the file that we will be working

with. (Note: If your code has a package statement on line 5, then exit NetBeans and

delete the project folder and do step 4 again. Make sure it looks like the screen shot

provided. Look carefully at the textbox next to the Create Main Class label in the New

Java Application dialog. For your information a package in Java is a folder. The

package line indicates that you put your file in a folder when you created the project. We

will not be using package statements in this text.)

Chapter 1 – Coding Introduction 77 | Page

© Daly & Wrigley

7. Type in the following Java program. You will need to delete some comment lines and add

some lines. Be careful to make your program look exactly as shown below. Try to keep

your statements on the same lines as those shown below and also try to use the same

approximate indentation to make your program more understandable. Change line 3 to be

your name, line 4 to be today’s date, and line 5 to be the JDK version that you are using

(You can check to see what version of the JDK that you have by clicking Help from the

menu and then About in the NetBeans environment. It will have Java: and then a number,

this is your JDK version. You do not need the number after the underscore).

Chapter 1 – Coding Introduction 78 | Page

© Daly & Wrigley

What does the above program do? You will not understand everything about this program

YET. However, here is a brief explanation line by line:

1-6) Lines 1-6 are known as comments. Comments are used to document code so that

other people reading our code can understand our logic. Comments are useful for

adding extra information to our programs that we don’t necessarily want to show up

in the output of our program such as: author, date, JDK used, program description,

etc. Also, it is a good idea to comment your programs extensively when you are just

starting out so that you have well-documented examples. This is a multi-line

comment which is represented by a /* at beginning of comment and */ to end the

multi-line comment.

7) Blank line for readability purposes. Does nothing. (not necessary)

8) States this will be a public program called HelloWorld. Class names should begin

with a capital letter. Be careful of capitalization in Java programs.

9) Blank line for readability purposes. Does nothing. (not necessary)

10) This is the main method declaration in this Java application. Every Java application

must contain a main method and it must always be public static. The arguments for a

method always appear in parentheses. In this case, the argument is a String array

called args. The variable name of args can be whatever the programmer wants it to

be, but most programmers use the variable name of args. The square brackets

appearing after the word String are found to the right of the "P" key on keyboard.

11) The statement of System.out.println("Hello World"); prints Hello World to the

screen and positions the insertion point on the next line. System is a Java class in the

library and the out object is the screen. Java is case sensitive so be careful of

capitalization. Java uses a punctuation method of class-dot-object-dot-method

syntax. All methods have arguments in parenthesis which is a way of telling a

method from a variable. This println method has an argument of a literal string of

"Hello World". All Java statement lines will end with a semicolon.

 Note: The next to last character in "println" is a lowercase L, not the number 1.
12) A right curly brace ends the main method. It is important to balance all your left and

right curly braces and left and right parentheses in all Java programs. The right curly

brace is found 2 keys to the right of the P key on keyboard.

13) A right curly brace to end the program.

8. This Java program needs compiled. Compiling a program will have the computer look at

each line of your program for syntax errors such as typos, mispunctuation, etc. To

compile your program, click on Run from the File menu, then Build Project. The

compiler will check this file for syntax errors and let you know on what lines you made

errors. Errors (along with line numbers of errors) will list in bottom panel of the screen. If

you have errors, correct your typos on the top of the screen and compile again. Make sure

you adjust the bottom output panel large enough to see your errors and your output.

Chapter 1 – Coding Introduction 79 | Page

© Daly & Wrigley

9. If there are no compilation errors (denoted by the words BUILD SUCCESSFUL), the

compiler will convert this Java program into a bytecode file called HelloWorld.class.

This bytecode file is a generic file that may be used on any operating system. This file is

located under the project folder, under the build folder, and in the classes folder.

10. Once compiled and you have a bytecode file (.class file extension), you are ready to

have the Java interpreter execute your Java program. To execute your first Java program,

you will click on Run from the NetBeans menu, then Run Project. “Hello World”

should be displayed in the output window as shown below:

11. The process you have seen so far is typing a Java program into NetBeans, compiling a

Java program, and executing the Java program. This is the process that you will be going

through over and over as you progress through Java. The output that you have at bottom

of screen is simply the computer displaying the words "Hello World".

12. Now, let's adjust the Java program. Add the following line as shown in the diagram

below. (Note: if you type sout and hit the tab key, it will type the System.out.println("");

line for you.)

System.out.println("Your name");

Chapter 1 – Coding Introduction 80 | Page

© Daly & Wrigley

13. Now, save the new version of the program by clicking on Save from the File menu. (DO

NOT click “Save As” and save this outside the project folder. NetBeans has a file

structure and you cannot pull your files out of this structure or else NetBeans will not

open them in the future. Compile the program (Run menu and then Build Project).

14. Execute the program (Run menu and then Run Project). Your display window should

look similar to the following:

Note: If you are getting compiler errors at bottom of screen, please double check the

capitalization, spelling, and punctuation.

15. To ensure that your code indentation is correct, you should always choose Source from

the menu, then Format. Make sure that you compile your program (Run menu, Build

Project) and run it (Run menu, Run Project).

16. Close the project by right clicking on the project on the left pane and choosing Close.

Chapter 1 – Coding Introduction 81 | Page

© Daly & Wrigley

Exercise 3: Simple Java Debugging

1. Open up the NetBeans environment if you have exited.

2. Choose File, Open Project…, select the HelloWorld NetBeans project (should have a

coffee cup next to your project), and click Open Project.

Chapter 1 – Coding Introduction 82 | Page

© Daly & Wrigley

3. Open your code, by expanding the HelloWorld project folder, then expanding the

Source Package folder, then expanding the default package folder (this is default since

we did not name this folder when we created the project) as shown below. You will need

to double click on the HelloWorld.java file to open the code.

4. You will now purposely make some errors in your program. Change the spelling

of println to be printline as follows:

 System.out.printline("Hello World");

5. Compile the program by clicking on Run menu and choosing Build Project. You should

get an error at the bottom of your screen as follows:

Chapter 1 – Coding Introduction 83 | Page

© Daly & Wrigley

6. It is telling you that there is an error on line 11. It could not find a method spelled as

printline. Some errors will be obvious and those are the nice ones to solve. Change the

word printline to be println so that this error is corrected.

7. Compile the program. You should be rid of all errors and it should say BUILD

SUCCESSFUL. Lesson learned: Names must be spelled exactly as Java expects.

8. Change line 11 by deleting the opening set of double quotes around Hello World as follows:

System.out.println(Hello World");

9. Compile the program. You should get 3 errors at the bottom of your screen:

Chapter 1 – Coding Introduction 84 | Page

© Daly & Wrigley

10. So, why would you get multiple error messages when you just made one mistake? This

can happen. You may even get 15 errors for just one mistake. It really depends upon what

mistake you make. In this case, it is saying it doesn't understand the Hello World and is

saying it thinks it needs a parenthesis. This is not really the case. What it needs is a string

enclosed in double quotes, but the error it shows is not real helpful. Now, insert the double

quote back in front of the word Hello.

11. Compile the program. You should be rid of all errors. Lesson learned: The Java compiler

doesn't always pinpoint the exact error. You must learn to look for errors anywhere on that

line or previous line.

12. Not all errors are compilation errors. We now have a bug-free (no errors) Java program.

13. A programmer sometimes makes logic errors. Change line 11 to say:

System.out.println("Helo Warld");

Note: Hello and World are incorrectly spelled.

14. Compile the program. The program should get a compile with BUILD SUCCESSFUL.

However, when this program is executed (RUN menu, then RUN MAIN PROJECT), you

will not get the words displayed that you wanted. The reason that you get no errors in the

compilation is because the words inside of double quotes can be anything. The computer

has no idea what you are trying to accomplish. It will display anything that is in double

quotes and doesn't check that part for incorrect spellings.

15. Please fix all of your errors and recompile. NetBeans automatically saves files when your

project is compiled.

16. Close the HelloWorld project by right clicking on the project in the left pane as shown

below:

Chapter 1 – Coding Introduction 85 | Page

© Daly & Wrigley

Exercise 4: Transitioning Alice to Java (ongoing exercise)

1. We already wrote the Alice code for the tea party in a previous exercise. Now let’s see

the Java code for this exercise using NetBeans. Open NetBeans if you have closed it.

2. Select File from the menu and then choose New Project. Then choose Java Project

from Existing Alice Project as shown below. (If this is not an option under the Java

folder, then you need to install the Alice plugin for NetBeans from the install directions).

3. Select Next, Click the Browse button next to the Alice world and find where you saved

your Alice TeaParty file; it should be in the Chapter1Exercises folder. Click Browse to

change the location of where it is going to save the new project. You should save this in

the same place as your Alice project under the Chapter1Exercises folder. Click Finish.

It may take a few minutes to pull up the Java files.

Chapter 1 – Coding Introduction 86 | Page

© Daly & Wrigley

4. You should see the TeaParty project on the left hand side of the window. If you click the

plus sign next to the TeaParty project, it will expand the TeaParty folder and you will

see the folders inside of the project that are used to make the NetBeans project work. If

you expand the Source Packages folder and the default package folder, you will see

all of the Java files for your project. This may be overwhelming at first, but eventually it

will make sense.

5. You should double click on the Scene.java file to open it up. This is where the code that

we wrote in Alice will be. We wrote our Alice code in the myFirstMethod of the Scene

tab. We are going to compare this Alice code with the NetBeans Java code.

Chapter 1 – Coding Introduction 87 | Page

© Daly & Wrigley

6. We are going to take a look at a few sections of this Scene file. The following code

creates the objects for your scene.

7. The myFirstMethod is where the code that we added to Alice will be. The word this

refers to the scene. The first statement is saying to use the playAudio method on the

scene. The second statement is telling Java to use the moveToward method on alice from

the scene. The marchHare from this scene is the first argument (what you want alice to

move towards) and the 2.0 is the second argument (the distance that you want her to

move towards the marchHare).

Note: If you are using a JDK earlier than 1.8, the Alice comments will not transfer

into NetBeans.

Chapter 1 – Coding Introduction 88 | Page

© Daly & Wrigley

8. Add the following line of code to the end of myFirstMethod. You can see below that the

end of the myFirstMethod is after the last move statement and before the ending curly

brace for the method.

this.marchHare.say("The End!");

9. To test this animation, we will click on the run button on the menu in NetBeans. The run

button is a shortcut way to save, compile, and run.

Chapter 1 – Coding Introduction 89 | Page

© Daly & Wrigley

10. In this example the word this is optional (it refers to the scene). You can remove it if you

find it confusing. Please see the code below. It is up to you if you want to leave it alone

or remove it.

All of this code may seem overwhelming at first, but by the end of this class you will

understand most of this code.

11. Run your program before exiting to save and test your changes.

Chapter 1 – Coding Introduction 90 | Page

© Daly & Wrigley

Exercise 5: Alice Card Game Coding (ongoing exercise)

1. Open up Alice 3. Open the file named CardGame from the Chapter0Exercises or

MyCardGame from the Chapter 0 Assignments. In Chapter 0, you set up a Card Game

scene as follows:

2. Go to Setup Scene. Some items will need to be adjusted before beginning the playing of

the game. The two win signs and the cones need to be made invisible. Choose the

winPlayer1Sign object on the right side of panel by choosing TextModel and then

winPlayer1Sign as follows:

Chapter 1 – Coding Introduction 91 | Page

© Daly & Wrigley

3. The WIN sign on left side of screen should be showing as selected. Change the opacity

to be 0.0

This will cause the WIN sign to disappear on left side.

4. Select the winPlayer2Sign and set its opacity to 0.0. Both WIN signs should now be

invisible. Select the cone1 object and set its opacity to 0.0 so that the left cone

disappears. It is still there but invisible. Select the cone2 object and set its opacity to 0.0

so that the right cone disappears. Our game is now ready for code. Click on EDIT CODE

button to take you back to main screen.

5. Save the new version of this file in the Chapter1Exercises folder instead of the

Chapter0Exercises folder. Click on File from the menu, then Save As, locate the

Chapter1Exercises folder, and save this file as CardGame.

6. Before writing the code for card game, we should first create a storyboard of what we

wish to accomplish.

 Scene opens with the CardGame

 Player cards are dealt out onto screen

 Display winner

 Have these cards disappear

 New Player cards are dealt out on screen

 Deteremine and display winner

 Have these cards disappear

Chapter 1 – Coding Introduction 92 | Page

© Daly & Wrigley

7. Every program you write should begin with comments for documentation. Drag the

//comment block to the editor and enter your comments. You need to put your name, the

date, and a description of the program at the top of all of your programs.

8. Our scene is complete, so we will move to the next task: “Player cards are dealt out onto

screen.” This will involve several steps so we will break this down into more detailed

steps. This process is called stepwise refinement.

9. Grouping sections of program together will make the program more understandable.

Therefore, we will begin a new section of code by dragging a DO IN ORDER to our

program and then adding a comment to this section stating that this is the deal out cards

section.

10. To make the announcement that cards will now be dealt out, we will choose any object

on the scene and choose the say procedure. The custom TextString should be DEAL

OUT THE CARDS PLEASE!

The following statement has the castleWall2 displaying the words. It also has the added

detail of duration of 3 seconds.

Player Cards are dealt out onto screen

 Make an announcement that cards will now be dealt out

 Playing card for player 1 moves from off screen to cone1 marker

 Playing card for player 2 moves from off screen to cone 2 marker

Chapter 1 – Coding Introduction 93 | Page

© Daly & Wrigley

11. Click on Run button in upper left corner to see the animation so far.

12. A playing card needs to be dealt out onto the screen. We have 10 cards so we will just

arbitrarily pick to deal out card 8 to player1. It should move out to our invisible

marker of cone1. To choose playingCard8, you will need to click on the down arrow

of the object list, choose PlayingCard, and then choose this.playingCard8 as follows:

Chapter 1 – Coding Introduction 94 | Page

© Daly & Wrigley

13. Once the playingCard8 is selected. Choose the procedure of moveTo and drag it to the

coding area. It will ask you what you are moving to and you should choose cone1. The

statement should be placed in the inner DO IN ORDER block and look as follows:

14. A second card should be dealt out for player2. Arbitrarily, we will choose playingCard3.

Select playingCard3 as your object and then choose the moveTo procedure. Choose to

move to cone2. The program should look as follows:

15. Click on the RUN button to see the animation play. If done correctly, an object should

say “DEAL OUT THE CARDS PLEASE!”, then playingCard8 will appear on screen,

and then playingCard3 will appear on screen. Make adjustments to your program if it

isn’t working correctly.

16. In the storyboard, the next task is “display winner” as seen below:

 Scene opens with the CardGame

 Player cards are dealt out onto screen

 Display winner

 Have these cards disappear

 New Player cards are dealt out on screen

 Deteremine and display winner

 Have these cards disappear

Chapter 1 – Coding Introduction 95 | Page

© Daly & Wrigley

17. Let’s break that down into the several steps it will take to display winner.

18. To flash the WIN sign for player 1 (named as winPlayer1Sign), we will have it show on

screen (opacity of 1) and then disappear (opacity of 0) and do this process three times.

Set the object to be the TextModel of winPlayer1Sign as follows:

19. Drag a DO IN ORDER block to the program. Drag up a comment line and state that this

section of program is to determine and display winner.

Display winner

 Flash the WIN sign for player 1

 Change the score for player 1

Chapter 1 – Coding Introduction 96 | Page

© Daly & Wrigley

20. In the procedures, drag the setOpacity method to the editor. Set the opacity to be 1.0.

This makes the WIN sign display on the screen. To make it then disappear, you would

drag the setOpacity method to the editor and set it to 0.0. (You can also copy these tiles

by holding down the CTRL key and dragging the tile down to empty area). You should

continue to have the opacity of this sign change between 1.0 and 0.0. This will cause a

flashing effect. You may also change the duration of each to less than 2 seconds to make

it flash quicker. In addition, you can add more copies of the statements to make it flash

more often. The following shows this section of the code with a one second duration for

each statement and flashing 3 times:

21. In this section, the score also needs to be changed. The player 1 score sign was named

player1ScoreSign and is a TextModel. Set the object to be:

Chapter 1 – Coding Introduction 97 | Page

© Daly & Wrigley

22. Once the player1ScoreSign is the selected object. Drag the setValue procedure to the

program. It will ask what the value should be and choose Custom TextString and then

type in Score: 1 in the window as follows:

23. The above will produce an Alice statement that will make the score appear to be 1. The

entire program should look as follows:

Chapter 1 – Coding Introduction 98 | Page

© Daly & Wrigley

24. Run the animation to see how well the program is working. The program should deal out

the cards, the WIN sign should flash for player 1 and then the score for player 1 should

change to 1. If your program is not working, you will need to review the above

statements and make adjustments to make it work.

25. Reviewing the storyboard, we move on to the next task, which is “Have these cards

disappear.”

26. We have to think which steps are involved in making the cards disappear. We would like

the cards to spin and then move off the screen to their original location. Let’s break this

section down as:

27. Let’s start a new DO IN ORDER block and drag a comment tile up to the block that

states that this section makes the cards disappear:

 Scene opens with the CardGame

 Player cards are dealt out onto screen

 Display winner

 Have these cards disappear

 New Player cards are dealt out on screen.

 Deteremine and display winner

 Have these cards disappear

Have the cards disappear.

 Make the player1’s card spin

 Make the player1’s card return to stack of cards

 Make the player2’s card spin

 Have the player2’s card return to stack of cards

Chapter 1 – Coding Introduction 99 | Page

© Daly & Wrigley

28. Set the object to be playingCard8 since that is player1’s card. Drag the turn procedure

to the editor and choose for a LEFT with a rotation of 8.0. Also, for this same object,

drag the moveTo procedure to the editor and choose to have it move to coneOutside.

These 2 statements will make the left card on screen spin around 8 times then move back

to original stack of cards on left side. The statements should be:

29. Run the program to see that everything is working. Change to playerCard3 and drag the

turn procedure to the program and make it turn 8 revolutions to the LEFT. Drag the

moveTo procedure to the program and tell it to move to the coneOutside. You should

now have the following:

30. Run the program and make sure it is working correctly. Both cards that were dealt out,

should now disappear. They are returning to the stack of cards, but you won’t be able to

see that.

Chapter 1 – Coding Introduction 100 | Page

© Daly & Wrigley

31. Since we will be adding more sections to continue this game, we would like to have a 4

second pause here in this section before it begins the game again. This is done with a

delay. Change the object to the ground. You will see that there are very few procedures

for the ground. One of them is a delay. Drag the delay procedure to the bottom of the DO

IN ORDER for this section. When asked for a number, choose Custom Decimal

Number and then choose 4 on the calculator and press OK. This means there will be a 4

second delay before we begin the game again.

32. We would like to play the game again with player 2 winning. We will arbitrarily choose

for playingCard1 to be dealt to player1 and playingCard10 to be dealt to player2 so that

player2 has the higher card and will win. Let’s review the original storyboard and see

where we are:

 Scene opens with the CardGame

 Player cards are dealt out onto screen

 Display winner

 Have these cards disappear

 New Player cards are dealt out on screen

 Deteremine and display winner

 Have these cards disappear

Chapter 1 – Coding Introduction 101 | Page

© Daly & Wrigley

33. We will duplicate previous sections of this program by copying/pasting them. In later

chapters you will learn better ways of doing this, but for now the copy/paste will work

fine. The first section to be duplicated will be the “deal out cards” section. Hold down the

CTRL key (alt/option key on the Mac) and drag the entire “deal out cards” DO IN

ORDER BLOCK to the Clipboard in upper right corner. If you don’t hold down the

CTRL key, it will cut the block of code instead of copying it. If you hover over the

clipboard, it will turn green when the copy/cut is successful. Then drag the clipboard to

the bottom of the programming area. If everything is done correctly, you should have a

deal out cards block at the beginning of the program and a copy of it at the bottom of the

program.

34. The lines in the new block at bottom of program, need to be adjusted. Why? We no

longer want to use playingCards 8 and 3. We want player 2 to win with playingCard10

and we want player 1 to have playingCard1. Adjust the lines in bottom section so that

you click on arrow next to playingCard8 and change it to playingCard1. Adjust the line

referring to playingCard3 to refer to playingCard10.

35. Run the program to see if the 2 cards in the second game are dealt out correctly.

36. According to the storyboard, our next step is to “Display winner”. We have this already

programmed into a block of code that we can copy and adjust. CTRL and drag the entire

“display winner” DO IN ORDER BLOCK to the Clipboard. Then drag the copy of this

section to the bottom of the editor.

37. This section will need adjusted. Look at the statements and try to decide what should

change. Player1 has a 1 and Player2 has a 10. Player2 should win this time. You will

need to adjust the setOpacity statements to refer to winPlayer2Sign. This is done by

clicking the down arrow next to winPlayer1Sign and choosing winPlayer2Sign from the

dropdown list.

Chapter 1 – Coding Introduction 102 | Page

© Daly & Wrigley

38. The last statement of this section changes the score but without adjustment, it changes the

score for Player1. We need to change the score for Player 2. Thus, in the last statement,

adjust the player1ScoreSign, by clicking on the down arrow next to it, and choosing

player2ScoreSign from the dropdown list. The entire new section should now appear as

follows:

39. Run the program to see if the WIN sign flashes for player 2 in the second game. Did the

score change for player 2 also?

40. The last task of the storyboard is to have these last 2 cards disappear. Again, we have that

code in an earlier section commented as “cards disappear”. Copy that section to the

clipboard by using the CTRL key. Drag the copy to the bottom of the editor.

Chapter 1 – Coding Introduction 103 | Page

© Daly & Wrigley

41. What needs adjusted? THINK! These statements are referring to playingCard8 and

playingCard3 because that is what they were in the first game. However, in this second

game, the playing cards used were playingCard1 and playingCard10. Adjust those lines

respectively so that you have the following:

42. The complete program is as follows:

Chapter 1 – Coding Introduction 104 | Page

© Daly & Wrigley

43. This exercise allowed you to set up an animated card game with the 2 players. The player

dealt the higher card wins. We executed the first game with player1 winning and second

game with player2 winning. You should run this program and make sure everything is

working.

44. Make sure to save this file as CardGame in Chapter1Exercises folder. You can practice

coding by adding other elements to this program but make sure you save your practice

with a different filename so that you have the completed version for future projects.

17.

Chapter 1 – Coding Introduction 105 | Page

© Daly & Wrigley

Summary

 Line by line instructions that tell a computer how to perform a task is called a computer

program.

 A programming language that is written at the very low technical circuitry level of the

computer is called a low-level programming language.

 High-level programming languages allow programmers to write programs using

English terms.

 James Gosling at Sun Microsystems is credited with creating Java programming

language. It was brought to public in 1995.

 Java is an object-oriented programming language that is platform-independent. The Java

slogan is "You can write once and run anywhere." The compiler creates a bytecode file

(with class extension) that can be used on all types of computer systems (MAC, Linux,

Windows, etc.) Bytecode is then fed to a Java Virtual Machine (JVM) where they are

interpreted and executed.

 Computer languages each have their own syntax, or rules of the language.

 When you write a program, indenting is important so that you and other humans can

understand your program.

 In every program that you write, there should be comment lines at beginning of program.

There should be a description of the program, author (you), date, and the JDK used for

the program.

 Compilation error messages try to pinpoint the problem in your program but they are not

always helpful. You may have to look around for the error or correct just the errors that

you do understand and then compile again. You will get better at doing this and

understanding this with additional experience.

 If your program is compiling fine, there still is no guarantee that it will work. An error-

free compilation program only means that the Java compiler understands your

commands, but the commands may not do what you want.

 The curly braces in Java are crucial. The symbols { } are generally found to the right of

the "P" key.

 Programming can be very frustrating but it also can be rewarding when you succeed.

Chapter 1 – Coding Introduction 106 | Page

© Daly & Wrigley

Review Questions

1. JDK stands for:

a. Java Details Kit

b. Java Development Kit

c. Java Decoder Kit

d. Java Debugger Kit

2. All programming languages work on the Internet.

a. True

b. False

3. Java and JavaScript are the same programming language.

a. True

b. False

4. There are many high-level programming languages for computers.

a. True

b. False

5. The rules of a programming language are its ___________.

a. Vocabulary

b. Syntax

c. Logic

d. Flowchart

6. Arguments to methods appear within

a. Parentheses

b. Semicolons

c. Curly braces

d. Quotation marks

7. All Java application programs must have a method called _______.

a. hello

b. system

c. main

d. Java

8. Non-executing program statements that provide documentation to humans are called

____________.

a. Notes

b. Classes

c. Commands

d. Comments

Chapter 1 – Coding Introduction 107 | Page

© Daly & Wrigley

9. Once a program has compiled without errors, it will always execute perfectly.

a. True

b. False

10. A computer ___________ tells a computer how to perform a task.

a. Switch

b. Program

c. Interface

d. Guide

11. Look at the Java program at the top of the following illustration. This Java program was

compiled and the compilation errors appear at bottom of screen. What needs to be

corrected to make this program compile correctly?

a. Change line 1 to say FirstJavaProgram instead of Error1

b. Change line 3 to say first instead of main

c. Change line 4 to say System instead of system

d. Change line 4 to say "Hello World" instead of "First Java Program"

12. Look at the Java program at the top of the following illustration. This Java program was

compiled and the Compilation errors appear at bottom of screen. What needs to be

corrected to make this program compile correctly.

a. Change line 1 to have semicolon at end of it.

b. Change line 3 to have semicolon at end of it.

c. Change line 4 to have semicolon at end of it.

d. Change line 5 to have semicolon at end of it.

Solutions: 1) b 2) b 3) b 4) a 5) b 6) a 7) c 8) d 9) b 10) b 11) c 12) c

Chapter 1 – Coding Introduction 108 | Page

© Daly & Wrigley

Assignments

1-1 Cola Commercial: Your goal is to create a cola commercial using Alice and NetBeans.

 Analyze and understand the problem to be solved. We would like to create a cola

commercial animation that is at least 5 seconds long. We need to take a look at the

gallery to see what objects we have that could be used in our commercial. Then we

need to set up the scene. You may have created the scene in chapter 0.

 Develop the logic to solve the program. We should develop a storyboard for our

animation. The storyboard is a short description of what you want to happen in your

animation.

 Code the solution in a programming language. Write the code in Alice. Give the

file an appropriate name. Add your name, date, and a description of the program to

the top of the program as comments.

 Test the program. Test the code in Alice.

1-2 Greeting Card: Your goal is to create an animated greeting card using Alice and

NetBeans.

 Analyze and understand the problem to be solved. We would like to create a

greeting card animation that is at least 5 seconds long. We need to take a look at the

gallery to see what objects we have that could be used in our commercial. Then we

need to set up the scene. You may have created the scene in chapter 0.

 Develop the logic to solve the program. We should develop a storyboard for our

animation. The storyboard is a short description of what you want to happen in your

animation.

 Code the solution in a programming language. Write the code in Alice. Give the

file an appropriate name. Add your name, date, and a description of the program to

the top of the program as comments.

 Test the program. Test the code in Alice.

Chapter 1 – Coding Introduction 109 | Page

© Daly & Wrigley

1-3 Animation: Your goal is to create a short animation using Alice and NetBeans.

 Analyze and understand the problem to be solved. We would like to create a short

animation of our choosing that is at least 5 seconds long. We need to take a look at

the gallery to see what objects we have that could be used in our commercial. Then

we need to set up the scene. You may have created the scene in chapter 0.

 Develop the logic to solve the program. We should develop a storyboard for our

animation. The storyboard is a short description of what you want to happen in your

animation.

 Code the solution in a programming language. Write the code in Alice. Give the

file an appropriate name. Add your name, date, and a description of the program to

the top of the program as comments.

 Test the program. Test the code in Alice.

1-4 Card Game adjusted: Your goal is to change the CardGame created in exercise 5 of

this chapter to have the playing cards dance out onto the screen by using some hand

movements or some leg movements.

 Analyze and understand the problem to be solved. We would like to create a short

animation to have the playing cards dance out onto the screen by using some hand

movements or some leg movements. We already have the playing card objects in the

scene. Only the “deal Out Cards” code section should be changed.

 Develop the logic to solve the program. We should develop a storyboard for our

animation. The storyboard is a short description of what you want to happen in your

animation.

 Code the solution in a programming language. Write the code in Alice. Save this

file as MyCardGame. Add your name, date, and a description of the program to the

top of the program as comments.

 Test the program. Test the code in Alice.

Chapter 1 – Coding Introduction 110 | Page

© Daly & Wrigley

1-5 Printing Initials: Your goal is to print your initials in block letters. In this exercise,

instead of just keying in a program, we will learn the entire programming process to

solve a problem. Programming is more than just keying in computer programs and

testing them. Most programmers must go through a process to logically solve a problem

or obtain a goal. The steps involved in computer programming are:

 Analyze and understand the problem to be solved. In this case, we would like the

computer to display your initials in block letters. For example, if your initials were

“YN” it would look as follows:

 Develop the logic to solve the program. We know how to print characters on a line

and the above looks like to could consist of several print statements. We can graph

the block letters on graph paper, so we can see the spacing. The letters should be

about 7 by 7 characters wide and have 5 spaces in between letters.

Below is a blank grid so that you can draw your initials.

Sample solution for initials YN (your name). You should not use YN unless your

initials are YN.

Y Y N N

 Y Y N N N

 Y Y N N N

 Y N N N

 Y N N N

 Y N N N

 Y N N

Chapter 1 – Coding Introduction 111 | Page

© Daly & Wrigley

 Code the solution in a programming language. We will need to code 7 print

statements to accomplish the above graphic of the “YN” block letters. The spacing in

these System.out.println statements must be perfect. Here is the Java code.

Enter the coded solution into a new project in NetBeans. Name this project Initials.

 Test the program. Translate the program into the language understood by the

computer. The Java compiler will do this. When you run your program, it is compiled

and a bytecode class file is created if there aren’t any syntax errors. This bytecode file

may be used on any operating system. Once you have a bytecode file, you will see the

results of your program. If you have syntax errors, you will need to fix these errors

before running your program (red underlines throughout your code).

Now, it is your turn to go through the programming process above and create

block letters of YOUR initials.

