

Learning Java through Alice 3
4th Edition

- An Introduction to Programming

Tebring Daly and Eileen Wrigley

Copyright © 2018 T. Daly & E. Wrigley

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted,

stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to

photocopying, recording, scanning, digitizing, taping, web distribution, information networks, or information storage
and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without

the prior written permission of the authors. For permission to use material from this text or product, submit all requests

to tdaly@collin.edu.

Some of the product names and company names used in this book have been used for identification purposes only and

may be trademarks or registered trademarks of their respective manufacturers and sellers.

The Alice Software System is © by Carnegie Mellon University.

Electronic Arts graphcs is © Electronic Arts, Inc.

The NetBeans Software is © by Oracle Corporation.

mailto:tdaly@collin.edu

Preface 3 | Page

© Daly & Wrigley

Table of Contents

Preface………Page 3

 Acknowledgements
About the Authors
Approach
Chapter Breakdown
Organization
Installing the Java and NetBeans
Installing the Alice Environment
Setting up NetBeans to Work with Alice

Chapter 0: Getting Started…………………………………………………………Page 13
0-1 What is Alice?
 Alice Scene Setup
0-2 Hands-on Exercises
 Exercise 1: Eat your Veggies Alice Program
 Exercise 2: Alice in Wonderland Tea Party

0-3 Summary
0-4 Review Questions
0-5 Assignments

Chapter 1: Coding Introduction………………………………………………Page 51

1-1 What is Alice?
 Alice Scene Setup
1-2 Introduction to Programming
1-3 What is Java?

History of Java
Java Capabilities

1-4 Programming Process
1-5 Documentation
1-6 Program Errors
1-7 Java Basics

 Statements
 Escape Codes
1-8 Hands-on Exercises

Exercise 1: Compiling and Executing a Java Program
Exercise 2: Drawing a Triangle Shape

1-9 Summary
1-10 Review Questions
1-11 Assignments

Preface 4 | Page

© Daly & Wrigley

Chapter 2: Variables………………………………………………………………………Page 85

2-1 Java Variables
Naming Variables
Using Primitive Data Types
Declaring Variables
Assigning Values to Variables
String Variables

2-2 Java Arithmetic
Precedence Rules
Examples
Modulus Explained
Shorthand Assignment Operators
Casting Rules
Walk-Through

2-3 Hands-on Exercises
Exercise 1: Making an Alien Walk in Alice
Exercise 2: Converting Fahrenheit to Celsius with Java*
Exercise 3: Transferring Alice to NetBeans Arithmetic Program
Exercise 4: Using Modulus in Money Changer Java Program*

2-4 Summary
2-5 Review Questions
2-6 Assignments

Chapter 3: Input/Output………………………………………………………………Page 127

 3-1 Data Input
Scanner Class
JOptionPane Class

3-2 Formatting Output
 NumberFormat Class
 DecimalFormat Class
3-3 Importing Packages and Classes
3-4 Hands-on Exercises
 Exercise 1: Mad Libs User Input
 Exercise 2: Changing an Alice Clock’s Time
 Exercise 3: Computing Celsius with Input and Output*
 Exercise 4: Money Changer with Input and Output*
 Exercise 5: Computing Tip Using Input and Output
3-5 Summary
3-6 Review Questions
3-7 Assignments

* Ongoing project

Preface 5 | Page

© Daly & Wrigley

Chapter 4: Conditionals………………………………………………………………Page 161

4-1 Conditional Execution
4-2 Alice Methods

 4-3 Java Built-in Methods
 Math Methods
 String Methods

4-4 Java If Statements
 Java Logical Operators
 Java Hierarchy of Operators
4-5 Java Switch Statements
 Hands-on Exercises
 Exercise 1: Shark Moves to Closest Fish in Alice
 Exercise 2: Determining the Tallest Object
 Exercise 3: Display a Greeting Based on Time of Day
 Exercise 4: Guessing Game
 Exercise 5: Display a Message based on Temperature
 Exercise 6: Validating a Password Entry
 Exercise 7: Setting up a Simple Calculator
 Exercise 8: Display a Random Quote using Switch Statement
4-6 Summary
4-7 Review Questions
4-8 Assignments

Chapter 5: Repetition……………………………………………………………………Page 209

5-1 Loops
5-2 Alice Loops
 While
 For
5-3 Java Loops
 While
 Do/While
 For

 5-4 Nested Loops
 Break Statement
 5-5 Hands-on Exercises
 Exercise 1: While Loop Tree Growing
 Exercise 2: For Loop to Print 99 Bottles of Soda Song
 Exercise 3: Tallying Coin Tosses
 Exercise 4: Modifying Guessing Game to Use a Loop*
 Exercise 5: Drawing a Grid using Nested Loops
 5-6 Summary
 5-7 Review Questions
 5-8 Assignments

Preface 6 | Page

© Daly & Wrigley

Chapter 6: Arrays……………………………………………………………………………Page 245

6-1 Declaring and Creating Arrays
 Declaring an Array
 Creating Array Objects
6-2 Accessing and Using Created Arrays
 Accessing Array Elements
 Length of Array
 Two-Dimensional Arrays
6-3 Hands-on Exercises
 Exercise 1: Entering Scores into an Array
 Exercise 2: Using Command Line Args Box to Enter Scores

 Exercise 3: Using JOptionPane to Enter Scores
 Exercise 4: Using a Two-Dimensional Array to Enter Scores
 Exercise 5: Finding the Distance Between Two Cities
 Exercise 6: Bubble Sort
 Exercise 7: Using a For Each loop for a Penguin Array
 6-4 Summary
 6-5 Review Questions
 6-6 Assignments

Chapter 7: Procedural Methods……………………………………………Page 287

 7-1 Introduction to Methods
 7-2 Overview
 Classes
 Objects
 Methods
 7-3 Java Application Programming Interface (API)
 7-4 Java Method Declaration
 7-5 Java Method Examples
 Methods with No Parameters
 Methods with Some Parameters
 7-6 Hands-on Exercises
 Exercise 1: Creating a Stomp in Alice
 Exercise 2: Making a Dog’s Tail Wag in Alice
 Exercise 3: Hokey Pokey in Alice*
 Exercise 4: Creating a Moon Walk Dance in Alice
 Exercise 5: Writing “Old MacDonald Had a Farm” Song
 7-7 Summary
 7-8 Review Questions
 7-9 Assignments

* Ongoing project

Preface 7 | Page

© Daly & Wrigley

Chapter 8: Functional Methods………………………………………………Page 339

 8-1 Functional Methods Explained
 8-2 Java Built-in Functional Methods
 Java Application Programming Interface
 Math Functions
 String Functions
 8-3 Alice Built-in Functional Methods
 8-4 Method Declaration
 8-5 Functional Method Example
 8-6 Hands-on Exercises
 Exercise 1: Using Alice Built-in Functional Methods
 Exercise 2: Finding the Circumference of Alice UFOs
 Exercise 3: Calculating BMI
 Exercise 4: Writing Calculations Methods in Another Class
 8-7 Summary
 8-8 Review Questions
 8-9 Assignments

Chapter 9: Classes and Objects……………………………………………Page 367

9-1 Object-Oriented Concepts
9-2 Java Classes
9-3 Setter and Getter Methods
 Alice Setter and Getter Methods

Java Setter and Getter Methods
9-4 Visualizing Your Application with UML
9-5 Hands-on Exercises
 Exercise 1: Practicing with Object Oriented Concepts

 Exercise 2: Using Setters and Getters
 Exercise 3: Adjusting the Hokey Pokey for All Bipeds*
9-6 Summary
9-7 Review Questions
9-8 Assignments

Chapter 10: Graphics………………………………………………………………………Page 407

10-1 Introduction to Graphical User Interfaces
GUI Packages – AWT and Swing
Creating a Window
Placing GUI Components in the Window

10-2 Graphics
Drawing
Layout

 Changing the Font
 Changing the Color
 Printing Strings

Drawing Lines

Preface 8 | Page

© Daly & Wrigley

Drawing Rectangles
Drawing Ovals
Drawing Arcs

10-3 Using Paint to Determine Pixel Locations
10-4 Hands-on Exercises
 Exercise 1: Drawing a Happy Face
 Exercise 2: Drawing a Car

Exercise 3: For Loop to Print Piano
 Exercise 4: For Loop to Print Checkerboard

 Exercise 5: For Loop to Animate Text
Exercise 6: Drawing Polygons

10-5 Summary
10-6 Review Questions
10-7 Assignments

Comprehensive Project……………………………………………………………………Page 449

Appendix………………………………………………………………………………………………………Page 511

 Exception Handling
 NetBeans Debugger

Preface 9 | Page

© Daly & Wrigley

First and foremost, the authors would like to convey special thanks to the Alice Software team at

Carnegie Mellon University for providing the Alice software to make this text possible. Also, we

would like to take this opportunity to thank Electronic Arts, Inc. for providing their rich set of

graphics which certainly makes Java and Alice programming more interesting. In addition, we

would like to express our gratitude to the National Science Foundation and the Alice ATE grant

team members for their continued support. Words cannot express our gratitude to Wanda Dann

who was abundantly helpful and offered invaluable assistance, encouragement, and guidance.

A heartfelt thanks to those that helped with revisions to this book: Bob Benavides (Computer

Science Professor at Collin College) and Lisa Moran (Student at Collin College).

About the Authors

This book has been a joint effort by a mother and daughter team.

Eileen Wrigley, full-time Professor of Computer Information Technology courses at the

Community College of Allegheny County in Pittsburgh, Pennsylvania brings more than 40 years

of teaching experience to her writing. She earned her B.S. and M.S. degrees from the University

of Pittsburgh in Mathematics and Computer Science.

Dr. Tebring Daly has been teaching full-time in the Computer Science department at Collin

College in Plano, Texas since 2006. She has earned her B.S. and M.S. degrees from the

University of Pittsburgh and Ph.D. from the University of North Texas.

Approach

This book is designed for students wanting to learn fundamental programming concepts. No

previous programming experience is required. All of the software used in this text are available

to download free of charge. The versions of the software may differ slightly from the versions

used in this text since the versions are constantly being updated.

This book will teach you how to program by using Java code. We will use a Java editing tool

called NetBeans1 to help write the code. The environment can be used on a Windows® operating

system2, Apple Macintosh® operating system3 (Mac), or Linux® operating system4.

1 Supported by Oracle, http://netbeans.org
2 Microsoft Corporation, http://www.microsoft.com
3 Apple Macintosh Corporation, http://www.apple.com/osx
4 Linux Foundation, http://www.linux.org

Acknowledgments

Preface 10 | Page

© Daly & Wrigley

We are also using a tool called Alice 35, to provide visuals for abstract programming concepts.

This environment works on Windows, Mac, and Linux operating systems. Alice 3 is a drag and

drop environment that can be transferred into Java code in the NetBeans environment as shown

below.

Chapter Breakdown

Preface provides an overview of the text and the instructions for downloading the required

software.

Chapter 0 will introduce you to the Alice 3 environment.

Chapter 1 describes the history of Java, basic programming terminology, and writing Java code

in NetBeans.

Chapter 2 covers naming rules, creating and using variables in code, using arithmetic statements,

order of operation, shorthand operators, and casting rules.

Chapter 3 explains various ways of formatting output and receiving user inputs. The user is

introduced to import statements.

5 Developed by Carnegie Mellon University (CMU), Alice, http://www.alice.org

Preface 11 | Page

© Daly & Wrigley

Chapter 4 provides an explanation and practice with relational and logical operators using

conditionals.

Chapter 5 shows three types of repetition techniques (while, do while, and for loop).

Chapter 6 explains how to use an array to store multiple values of the same type.

Chapter 7 shows the user how to modularize programs using methods. The user is introduced to

the Java documentation and the syntax for writing procedural methods.

Chapter 8 expands upon chapter 7 to include methods that return values.

Chapter 9 talks about object-oriented terms (encapsulation, inheritance, and polymorphism) and

their use.

Chapter 10 provides an introduction to GUI and the structure for creating basic drawings.

Organization

Each chapter is divided into content segments, hands-on exercises, a summary, and review

questions. You should work through the hands-on exercises in each chapter.

The data files needed for the hands-on exercises and assignments can be found at

http://faculty.collin.edu/tdaly/book4/.

You may want to create an organizational method for keeping track of your files. Each chapter

has several exercises that will walk you through the programming concepts for that chapter.

There is at least one assignment at the end of every chapter. The assignments test your ability to

put the concepts from the chapter into action on your own. Please save the chapter exercises to

the “Exercises” folder and the assignments at the end of each chapter to the “Assignments”

folder so that you don’t get confused.

Instructors: Please email tdaly@collin.edu for solutions, sample syllabi, etc.

mailto:tdaly@collin.edu

Preface 12 | Page

© Daly & Wrigley

Installing the Java and NetBeans

Java is an object-oriented programming language. We will be writing all of our Java code in

NetBeans. NetBeans is not the only environment for writing Java code, but it is what we will be

using for this text.

You should download the NetBeans and Java SDK (Software Development Kit) bundle. This

bundle will include everything that you will need to write and run Java programs. Please follow

the install directions located on the following website: http://faculty.collin.edu/tdaly/book4/

Installing the Alice Environment

Alice 3 provides a 3D environment for manipulating objects using drag and drop code segments.

This environment helps to provide visual representations of abstract programming concepts.

Please follow the install directions located on the following website:

http://faculty.collin.edu/tdaly/book4/

Setting up NetBeans to Work with Alice

There is an Alice 3 plugin file that you will also need to download and add to the NetBeans

environment. Please follow the install directions located at the following website:

http://faculty.collin.edu/tdaly/book4/

http://faculty.collin.edu/tdaly/book4/

 Explain the purpose of Alice
 Setup an Alice scene

 Code an Alice animation

Objectives

Getting Started

Chapter 0

Chapter 0 – Getting Started 14 | Page

© Daly & Wrigley

The Alice team at Carnegie Mellon University named the Alice programming software in honor

of Lewis Carroll who wrote Alice's Adventures in Wonderland. Lewis Carroll was able to do

complex mathematics and logic, but he knew that the most important thing was to make things

simple and fascinating to a learner.

Alice makes it easy to create an animation or interactive game. It is designed for beginners who

want to learn object-oriented programming. In Alice, 3-D objects (e.g., people, aliens, animals,

props) are placed in a scene. Then, students drag and drop tiles to create a program to animate

the objects. These tiles correspond closely to statements in Java. Alice allows students to

immediately see how their programs run, enabling them to easily understand the relationship

between the programming statements and the behavior of objects in their program.

Alice 3 is the newest version of the Alice software. This version of the software allows users to

transfer Alice projects into the NetBeans environment to edit the Java code. This text will be

using Alice to demonstrate fundamental programming concepts in Java such as objects, methods,

looping, etc. by creating animations.

An Alice scene begins with a template for an initial scene. These templates can be grass, water,

snow, etc. Then, you add various objects to the scene to create the virtual scene that you desire.

What is Alice?

Scene Editor

Code Editor

Methods

Controls

Chapter 0 – Getting Started 15 | Page

© Daly & Wrigley

Alice Scene Setup

Objects are added to the scene via the scene editor (Click on Setup Scene button).

There are several choices for selecting objects from the gallery. The hierarchy choice is broken

down by physical makeup. A biped has 2 legs, a flyer has wings, a prop is something that is

inanimate, a quadruped has 4 legs, and a swimmer has fins.

Gallery

Chapter 0 – Getting Started 16 | Page

© Daly & Wrigley

You can also view the objects by theme or by group as shown below. The search feature is nice

if you are looking for a particular object.

The Alice developers have provided a number of 3D models for you to use in your animations.
An Alice 3D model (class) is a blueprint that tells Alice how to create a new object in the

scene. The 3D model provides instructions on how to draw the object, what color it should be,
what parts it should have, its size (height, width, and depth), and many other details. Once you
decide what objects, you would like to have, you will need to click on the class to create an
object of that type. For example, if I want a girl object in my world, I would select the Biped
folder and then the Adult class to create the girl object.

Chapter 0 – Getting Started 17 | Page

© Daly & Wrigley

When you create an object, you will need to give it a name. You can leave the default name or
give it your own name. You cannot give two objects the same name. Be careful when you are
creating objects, if you try and use the name girl more than once, it won’t let you create the new
object.

All objects will initially be placed into the middle of the scene and then can be manipulated to
any position desired. Alternatively, objects can be dragged to any position in the scene.

Alice objects are represented in a three-dimensional space. Each object has width, height, and

depth as shown below. The height is measured vertically, the width is measured horizontally, and

the depth is measured from front to back.

 Width

 Depth

There are six possible directions in which an object may move – forward, backward, up, down,
left and right. Remember that directions are left and right with respect to the object, not the
camera’s point of view. For example, this girl object can move forward, backward, up (in air),
down (into ground), her left, or her right. The direction an object is facing and where the top of
the object is located (relative to the world) is known as the object’s orientation. In the scene
editor, there are 4 buttons that allow you to manipulate the object.

Height

Chapter 0 – Getting Started 18 | Page

© Daly & Wrigley

The DEFAULT button allows you to rotate the object. Hold down the left mouse button and
drag the circle to rotate the object.

The ROTATION button allows you to do rotations in all directions. Hold down the left mouse
button and drag the appropriate circle to rotate the object.

Chapter 0 – Getting Started 19 | Page

© Daly & Wrigley

The MOVE button allows you to move the object in all directions. Hold down the left mouse
button and drag the arrows to move the object. The arrow at the top of the object moves the
object up and down, the arrow on the right of the object moves the object left and right, and the
arrow in front of the object moves the object forward and backward.

The RESIZE button allows you to resize the object. Hold down the left mouse button and drag
the arrow at the top of the object. The object will resize proportionately.

Chapter 0 – Getting Started 20 | Page

© Daly & Wrigley

All of the Alice models have body parts that can be manipulated with rolls, turns, etc. You
can access the subparts for an object by clicking the part drop down next to the object drop
down.

The best way to see how Alice 3 works is to create a virtual world with objects and animate the

objects in that world. This will be done in the hands-on exercises.

Chapter 0 – Getting Started 21 | Page

© Daly & Wrigley

Hands-on Exercises

Exercise 1: Eat your Veggies Alice Program

1. Open up Alice 3. You will need to find the installed Alice 3 folder and double click on

the Alice 3 application file. The first step in programming is understanding the problem.

We would like to create an animation that has the cow try to convince people to eat

chickens, the chicken tries to convince the people to eat fish, and the fish tries to

convince people to go vegan. Once you understand the problem, you will setup the scene

and create a storyboard for animating the scene.

2. Our goal for the scene setup is to have the following animals: cow, chicken, and fish.

When we are finished it should look similar to the following:

3. Select the grass template:

Chapter 0 – Getting Started 22 | Page

© Daly & Wrigley

4. Select File from the menu, then Save As. Save this file as Vegan. Please get in the habit

of capitalizing the first letter of every word in your filename and do not use spaces when

naming your files. You should save your work often. You can click Save from the File

menu from this point on. You should save this file in your Chapter1Exercises folder.

5. Click on Setup Scene button.

6. First we are going to add a cow. Click on the tab called Browse Gallery By Group.

Click on the animals folder.

7. Scroll to the Cow class (they are in alphabetical order). You could have used the Search

Gallery tab to find the cow as well.

Chapter 0 – Getting Started 23 | Page

© Daly & Wrigley

8. Click on the Cow class to add a cow to your world or hold down your left mouse button

and drag this object to wherever you would like to place it in your scene. If you choose to

click on the Cow class, the new object will be placed automatically in the center of the

scene.

9. When you click on the class it will ask you for a name for the object. You can leave the

name cow or rename if you want. Do not put spaces in your object name and the first

letter of your object name should begin with a lowercase letter and the first letter of the

second word should be a capital letter. Object names begin with a lowercase letter.

10. Please add a chicken in the same way that you added the cow. There will be several

chickens to choose from, pick whichever one you like. Name this chicken whatever you

would like, but be sure to follow the naming rules. Do not put spaces in your object name

and the first letter of your object name should begin with a lowercase letter and the first

letter of the second word should be a capital letter. Object names begin with a lowercase

letter.

11. Next, we are going to add a fish. Now we can test out the search feature in Alice by

typing fish into the search box. Scroll to the end to see the fish. Please choose the fish

that you like. You can search for a pond to add to the environment as well. Place the fish

in the pond.

Chapter 0 – Getting Started 24 | Page

© Daly & Wrigley

12. We are finished with the scene setup.

13. Before writing the code for our animation, we should first create a storyboard of what we

wish to accomplish.

14. Drag the //comment block to the editor and enter your comments. You need to put your

name, the date, and a description of the program in comments at the top of all of your

programs.

• Scene opens with the cow eating

• Cow says “Eat more chicken”

• Chicken moves forward

• Chicken says “Eat more fish”

• Fish says “Go vegan”

• Fish hides under the water

Chapter 0 – Getting Started 25 | Page

© Daly & Wrigley

15. Select the cow’s head by selecting the cow from the object drop down and then clicking

on the arrow to the right to display the subpart menu. Choose the this.cow.getHead from

the list.

Chapter 0 – Getting Started 26 | Page

© Daly & Wrigley

16. Select the move method and drag it to the scene editor as shown below. Select DOWN as

the direction argument and 1.0 as the amount argument. A method is an action that an

object can do and an argument answers a question. The DOWN argument answers the

question of what direction the cow’s head should move. The 1.0 argument answers the

question of how much the cow should move its head.

17. Test your program by clicking on the Run button.

Chapter 0 – Getting Started 27 | Page

© Daly & Wrigley

18. Now, let’s make the cow put his head back up, by selecting the move method for the

cow’s head again, but this time choosing UP as the direction argument and 1.0 as the

amount argument.

19. Test your program by clicking on the Run button.

20. Next, let’s have the cow move his mouth left and right. We will need to click on the

arrow next to the cow object to select the cow’s mouth.

Chapter 0 – Getting Started 28 | Page

© Daly & Wrigley

21. Now, drag the move method for the cow’s mouth to the scene editor. Select LEFT as the

first argument that answers the question of what direction you want the cow’s mouth to

move and select 0.1 as the second argument that answers the question of how much you

want his mouth to move. You will notice the 0.1 is not an option in the drop down list for

the amount. You will need to select Custom DecimalNumber… and then type 0.1 in.

22. Your code should look as follows. Run you program to see the results thus far. It should

look like the cow is eating grass.

23. Next, let’s have the cow say “Eat more chicken”. You will first need to select the whole

cow object from the list.

Chapter 0 – Getting Started 29 | Page

© Daly & Wrigley

24. Then, drag the say method over to the code editor and select Custom TextString. Type

in the following string: “Eat more chicken.” into the text box.

25. Run your program to test it.

26. Next, let’s select the whole chicken and drag the move method into the code editor for

the chicken. We will select FORWARD as the first argument and 1.0 as the second

argument.

Chapter 0 – Getting Started 30 | Page

© Daly & Wrigley

27. Run your program. Does the chicken move forward?

28. Next, drag the say method for the chicken to the code editor and select Custom

TextString. Type in the following string: “Eat more fish.”

29. Run your program to see your animation.

30. Finally, have the fish respond to the cow and chicken, by telling the user to go vegan so

they won’t cause any animal suffering. Click on the whole fish, then drag the say method

to the code editor and select Custom TextString. Type in the following string: “Go

Vegan!”

31. Next, let’s select the whole fish object and drag the move method into the code editor for

the fish. We will select DOWN as the first argument and 1.0 as the second argument.

This will make the fish look like he is going under water to escape being eaten.

Chapter 0 – Getting Started 31 | Page

© Daly & Wrigley

32. Your final code should looks as follows.

33. Run your program to test your animation. Save your work and exit Alice.

Chapter 0 – Getting Started 32 | Page

© Daly & Wrigley

Exercise 2: Alice in Wonderland Tea Party

1. Open up Alice 3. You will need to find the installed Alice 3 folder and double click on

the Alice 3 application file. The first step in programming is understanding the problem.

We would like to create a trimmed version of the Alice in Wonderland unbirthday tea

party. Once you understand the problem, you will setup the scene and create a storyboard

for animating the scene.

2. Our goal for the scene setup is to have the following characters: Alice, Mad Hatter, and

the March Hare. We will also add some objects to make the scene more interesting: a

table, chairs, a tea pot, tea cups, and a birthday cake. When we are finished it should look

similar to the following:

3. Select the wonderland template:

4. Select File from the menu, then Save As. Save this file as TeaParty. Please get in the

habit of capitalizing the first letter of every word in your filename and do not use spaces

when naming your files. You should save your work often. You can click Save from the

Chapter 0 – Getting Started 33 | Page

© Daly & Wrigley

File menu from this point on. You should save this file in your Chapter1Exercises

folder.

5. Click on Setup Scene button.

6. We are going to add a table to the scene for the characters to gather around. There is a tea

table specifically designed for Alice in Wonderland. Click on the tab called Browse

Gallery By Class Hierarchy. Click on the Prop classes category.

7. Scroll to the end (they are in alphabetical order) until you see the TeaTable class. You

could have used the Search Gallery tab to find the table as well.

8. Click on the TeaTable class to add a tea table to your world or hold down your left

mouse button and drag this object to wherever you would like to place it in your scene. If

you choose to click on the TeaTable class, the new object will be placed automatically in

the center of the scene.

Chapter 0 – Getting Started 34 | Page

© Daly & Wrigley

9. When you click on the class it will ask you for a name for the object. You can leave the

name teaTable or rename if you want. Do not put spaces in your object name and the first

letter of your object name should begin with a lowercase letter and the first letter of the

second word should be a capital letter. Object names begin with a lowercase letter; we

will talk more about this in the next chapter.

10. Next, we are going to add a chair. Now we can test out the search feature in Alice by

typing chair into the search box. You will have a list of all the chair models. Please

choose the chair that you like.

11. Drag the chair that you want onto the scene where you want it by holding down the left

mouse button and dragging from the class that you are choosing to add. You will see a

yellow bounding box that shows you were your new object will be placed. When you get

the object where you want it, release and it will ask you for a name for the object.

Chapter 0 – Getting Started 35 | Page

© Daly & Wrigley

You should name this object something simple. Let’s name it chair.

12. We should resize the chair so that it matches the size of the table. To do this, you will

need to select the chair and then click on the resize button from the handle style choices.

When you click on the button, an arrow will appear above the chair. Holding down your

left mouse button on the arrow and move your mouse up and down to resize the chair.

13. To rotate the chair, click on the rotation button from the handle style choices. If you hold

down the left mouse button on the bottom ring and drag to the right and left, it will spin

the chair around so that you can have it face the table. To move the chair, click on the

move button from the handle style choices. If you hold down your left mouse button on

the arrow on top of the chair and drag up and down, the chair will move up and down.

The arrow in the front will move the chair forward and backward. The arrow to the right

will move the chair left and right.

14. Add 3 more chairs to the scene around the table. Be careful not to give the chairs the

same name. You will see the following error if you try to name your objects the same

name. You can call the other chairs: chair2, chair3, and chair4. Do not put spaces in your

names. The Alice software will not allow you to name your objects with spaces and this

is because the Java language does not allow you to have spaces when naming.

Chapter 0 – Getting Started 36 | Page

© Daly & Wrigley

15. It should look similar to the following:

16. Next, we need to add some teacups and a teapot onto the table. If you search for tea in the

gallery, you will be given the teapot, teacups, saucers, etc. I would like to start with the

teapot. When you create the teapot, you can use the default name. We can play with

trying to get this teapot onto the table, but this would take a while and there is an easier

way. If you right click on the teapot, select procedures, teapot place…, above, and

teaTable, it will place the teapot on top of the table for you.

Chapter 0 – Getting Started 37 | Page

© Daly & Wrigley

17. Add a few teacups onto the table and adjust them how you want them. Be careful not to

give 2 teacups the same name.

18. Add a birthday cake onto the table and readjust the items on the table. It should look

similar to the following.

Chapter 0 – Getting Started 38 | Page

© Daly & Wrigley

19. Next, we are going to add the characters. The characters can be found in the biped folder

in the gallery. Let’s add the March Hare first. Place him directly in front of one of the

chairs. It doesn’t matter which chair you choose. You will need to rotate him so that he

lined up with the chair. We are going to make him sit in the chair.

20. To move the marchHare’s joints, we will need to select the marchHare and drop down his

subparts as shown below. Choose the hare’s right hip.

Chapter 0 – Getting Started 39 | Page

© Daly & Wrigley

Now, we need to select ONE SHOT, procedures, marchHare.getRightHip.turn…,

BACKWARD, and 0.25

21. Repeat this for the leftHip.

22. Select the marchHare’s rightKnee, then select one shots, procedures, turn, forward,

and 0.25.

23. Repeat this for the leftKnee. You may need to move the entire marchHare back and up

to get him onto the chair.

Chapter 0 – Getting Started 40 | Page

© Daly & Wrigley

24. Now, let’s add the madHatter to the scene. Place him next to the marchHare. It doesn’t

matter which side he is on. You may need to resize, rotate, and move him to get the scene

to look the way you want.

25. Finally, we are going to add Alice to the scene. We will need to create Alice using the

Child class in the biped classes. The Child class allows you to select male or female, the

skin tone, the attire, the hair color, eye color, and shape of the person. Create a girl that

looks like Alice and name her alice. Normally you would capitalize a name, but when we

name objects, we don’t capitalize the object names.

26. Place alice off to the side of the animation window looking at the tea party as shown

below.

27. We are finished with the scene setup. If you want to add some wonderland trees or other

objects to your scene, feel free.

Chapter 0 – Getting Started 41 | Page

© Daly & Wrigley

28. Before writing the code for our animation, we should first create a storyboard of what we

wish to accomplish.

29. Drag the //comment block to the editor and enter your comments. You need to put your

name, the date, and a description of the program in comments at the top of all of your

programs.

30. Click on the this, make sure that the Procedures tab is selected, drag the playAudio

method to the editor, select Import Audio, use the Unbirthday Song file (located in

your Data_Files folder: http://faculty.collin.edu/tdaly/book4/). Procedural methods are

actions that objects can do. The word “this” refers to the scene and we are telling the

scene to play the audio.

• Scene opens with the Mad Hatter and the March Hare gathered around a table with

tea and a birthday cake

• The unbirthday song plays

• Alice approaches the table

• Alice tells the characters that she enjoyed their singing

• They tell her that nobody ever compliments their singing and insist that she has a

cup of tea

• She apologizes for interrupting their birthday party

• They explain that it isn’t their birthday; it is their “unbirthday”

• Alice then asks them to explain an “unbirthday”

• They then tell her that everyone has 364 “unbirthdays” each year

• Alice realizes that it is her “unbirthday” too

Chapter 0 – Getting Started 42 | Page

© Daly & Wrigley

31. We need to test the program by clicking the Run button to play the animation. You

should hear the song play but nothing else happens yet.

32. Next, we will select alice, make sure that the procedures tab is selected, and drag the

moveToward method onto the editor underneath the playAudio method. When you

release the mouse, you will be prompted to select the target that you want alice to move

toward and the amount that you want her to move. Select marchHare as the target and

2.0 as the amount. If you wanted a number that isn’t on the list, you would select Custom

DecimalNumber and type in your own number. These choices (target and amount) are

known as arguments in programming. Run the animation to see if alice moves toward the

marchHare; you will have to wait until the song finishes to see her move. The program

happens in order. The next line doesn’t execute until the previous line is finished.

Chapter 0 – Getting Started 43 | Page

© Daly & Wrigley

33. If you don’t want to wait for the song to finish every time you want to test out your

animation, you can disable lines of code and enable them later. To do this, you would

need to right click on the playAudio line and uncheck Is Enabled. You will see the line

will now have gray lines over it.

34. Now, we want alice to praise their singing. You will need to select alice and then drag the

say method onto the editor underneath the moveToward method. When you do this, you

will be prompted (argument) to enter the text of what you want alice to say. You should

select Custom TextString… and then enter I enjoyed your singing. You can select add

detail if you want to make adjustments such as text color, speech bubble color, outline

color, or the duration that the bubble stays on the screen. You can leave the default

settings if you want. The duration is defaulted to 1 second.

Chapter 0 – Getting Started 44 | Page

© Daly & Wrigley

35. Create the following dialog between the characters:

madHatter – We never get compliments, you must have a cup of tea.

alice – Sorry for interrupting your birthday party.

marchHare – This is an unbirthday party.

alice – Unbirthday?

madHatter - Statistics prove, prove that you've got one birthday. One birthday every

year, but there are 364 unbirthdays. That’s exactly why we are gathered here to cheer.

alice – Well I guess it’s my unbirthday too!

36. Have Alice joyously jump up and down at the end. If you want her to jump at a faster

pace, you can change the duration to be 0.5 seconds instead of 1 second (Click the add

detail drop down to change the duration.

37. To test the full program with the song, you will need to enable the playAudio method.

Right click on the playAudio line and check Is Enabled. The grey lines through the

playAudio method should disappear.

Chapter 0 – Getting Started 45 | Page

© Daly & Wrigley

38. Save your work and exit Alice.

Chapter 0 – Getting Started 46 | Page

© Daly & Wrigley

Summary

 Alice is an innovative 3D programming environment that makes it easy to create an
animation or interactive game. The team named the system “Alice” in honor of Lewis
Carroll who wrote Alice’s Adventures in Wonderland.

 An Alice virtual world begins with a template for an initial scene. These templates can be
grass, water, snow, etc.

 An Alice 3D model is like a blueprint that tells Alice how to create a new object in the
scene. The 3D model provides instructions on how to draw the object, what color it
should be, what parts it should have, its size (height, width, and depth), and many other
details.

 When you choose to place an Alice object into your world, Alice will create an object
(instance) of that class in your world and ask you to name that object.

 When naming an object (instance) of a class, you should begin the name with a lowercase
letter. If the name will have multiple words in it, each successive word with then begin
with a capital letter. An example would be myLittleSnowman.

 Objects from the galleries are added to the scene via the SCENE EDITOR (a click on
Setup Scene button).

 Objects in an Alice world are three dimensional. Each object has width, height, and

depth.

 There are six possible directions in which an object may move – forward, backward, up,

down, left and right.

 Each object in Alice has a unique “center.” An object’s center is used for measuring

distance to another object and for determining its position in the world.

Chapter 0 – Getting Started 47 | Page

© Daly & Wrigley

Review Questions

1. Alice was named in honor of Lewis Carroll.

a. True

b. False

2. An Alice 3D model is like a blueprint that tells Alice how to create a new object in the

scene.

a. True

b. False

3. Once an object is placed into a scene, it can’t be manipulated by moving, rotating, etc.

a. True

b. False

4. If you were to name an object (instance) of an Airplane class, which of the following

names would be proper?

a. MyAirplane

b. my airplane

c. myairplane

d. myAirplane

5. You can have more than one object of the same class in the same world?

a. True

b. False

Solutions: 1) a 2) a 3) b 4) d 5) a

Chapter 0 – Getting Started 48 | Page

© Daly & Wrigley

Assignments

0-1 Cola Commercial: Your goal is to create a cola commercial using Alice and NetBeans.

• Analyze and understand the problem to be solved. We would like to create a cola

commercial animation that is at least 5 seconds long. We need to take a look at the

gallery to see what objects we have that could be used in our commercial. Then we

need to set up the scene.

• Develop the logic to solve the program. We should develop a storyboard for our

animation. The storyboard is a short description of what you want to happen in your

animation.

• Code the solution in a programming language. Write the code in Alice. Give the

file an appropriate name. Add your name, date, and a description of the program to

the top of the program as comments.

• Test the program. Test the code in Alice.

0-2 Greeting Card: Your goal is to create an animated greeting card using Alice and

NetBeans.

• Analyze and understand the problem to be solved. We would like to create a

greeting card animation that is at least 5 seconds long. We need to take a look at the

gallery to see what objects we have that could be used in our commercial. Then we

need to set up the scene.

• Develop the logic to solve the program. We should develop a storyboard for our

animation. The storyboard is a short description of what you want to happen in your

animation.

• Code the solution in a programming language. Write the code in Alice. Give the

file an appropriate name. Add your name, date, and a description of the program to

the top of the program as comments.

• Test the program. Test the code in Alice.

Chapter 0 – Getting Started 49 | Page

© Daly & Wrigley

0-3 Animation: Your goal is to create a short animation using Alice and NetBeans.

• Analyze and understand the problem to be solved. We would like to create a short

animation of our choosing that is at least 5 seconds long. We need to take a look at

the gallery to see what objects we have that could be used in our commercial. Then

we need to set up the scene.

• Develop the logic to solve the program. We should develop a storyboard for our

animation. The storyboard is a short description of what you want to happen in your

animation.

• Code the solution in a programming language. Write the code in Alice. Give the file

an appropriate name. Add your name, date, and a description of the program to the

top of the program as comments.

• Test the program. Test the code in Alice.

 Explain the difference between high and low level programming languages

 Describe the history of how the Java programming language was started

 Briefly describe the following:

o Object Oriented Programming

o Platform-Independence

o Garbage Collection

o Java Development Kit

 Explain the difference between applets, applications, and servlets

 Explain the difference between Java and JavaScript

 Compile and execute a Java program

 Debug errors

 Identify and fix compiler errors

Coding Introduction

Chapter 1

Objectives

Chapter 1 – Coding Introduction 52 | Page

© Daly & Wrigley

Introduction to Programming

A computer program is a way to tell a computer what to do. When you want a computer to

perform a task, you must give it line-by-line instructions on how to accomplish that task. These

line-by-line instructions are called a computer program.

The computer stores information based on electronic signals, referred to as binary. A bit (binary

digit), the smallest unit of information storage, is represented by either an on (1) or off (0) signal

inside the computer. One byte (a character such as the letter “A” on the keyboard) uses eight

bits.

There are many different computer programming languages available and the choice of what

programming language to use will depend upon the task for the computer to accomplish. A

programming language that is written at the very low technical circuitry level of the computer is

called a low-level programming language. Some examples of low-level programming

languages are machine language and assembler language. Machine language is composed of

binary 1's and 0's and is not intended for humans to read. Machine language varies from

computer to computer. The machine language for a PC is entirely different from machine

language for Mac. A computer only understands programs (without any conversion) written in its

machine language (binary).

High-level programming languages allow programmers to write programs using English terms.

Computers do not understand high-level languages directly so this means that computer

programs written in a high-level language must be converted to machine language by an

interpreter or compiler. Some high-level computer programming languages available are: C++,

Visual Basic.NET, C#, and Java. Each of these programming languages is best-suited to a certain

type of computer or problem such as mainframes, business, games and/or science.

Computer languages each have their own syntax, or rules of the language. For instance, in a

high-level programming language the verb to display information might be "write", "print",

"show", etc. In a low-level programming language the verb to display information might be a

code of "101011" in binary. Java is a high-level programming language with a specific

vocabulary and specific rules for using that vocabulary.

What is Java?

History of Java

In 1990, James Gosling was given the task of creating programs to control consumer electronics

(TVs, VCRs, toasters, etc.). Gosling and his team at Sun Microsystems started designing their

software using C++. The team found that C++ was not suitable for the projects they had in mind.

They ran into trouble with complicated aspects of C++ such as multiple inheritances of classes

and with program bugs such as memory leaks. So, Gosling created a simplified computer

Chapter 1 – Coding Introduction 53 | Page

© Daly & Wrigley

language that would avoid all the problems he had with C++. Thus, a new programming

language named Oak (after a tree outside his window) was born.

Oak was first used in something called the Green project, which was a control system for use in

the home using a hand-held computer called Star Seven. Oak was then used in another project

which involved video-on-demand. Neither project ever made it to the public eye, but Oak gained

some recognition. Sun discovered that the name Oak was already copyrighted. After going out

for coffee one day, they named their new powerful language Java.

In 1993, the Java team realized that the Java language they had developed would be perfect for

web page programming. The team came up with the concept of web applets, small programs that

could be included in web pages, and created a complete web browser called HotJava (originally

called Webrunner) that demonstrated the language's power.

In the second quarter of 1995, Sun Microsystems officially announced Java. The "new"

language was quickly embraced as a powerful tool for developing Internet applications. Netscape

Communications added support for Java to its Netscape Navigator 2.0. Java became an instant

"hit" and also made the Netscape browser very popular. Other Internet software developers such

as Microsoft eventually followed suit and reluctantly included Java in their browsers. These

browsers were called "Java-enabled". Java-enabled meant that the browser could download and

play Java classes (applets) on the user’s system. (Applets appear in a web page much the same

way as images do, but unlike images, applets can be dynamic and interactive.)

Java Capabilities

• Java is easier than C++. Although Java looks similar to C and C++, most of the

complex parts such as pointers, multiple inheritance, and memory management have been

excluded from Java.

• Java is an Object Oriented Programming (OOP) language, which allows you to

create flexible, modular programs and reuse code. OOP is based on the theory that

everything in the world can be modeled as an object. An object has attributes (data) and

behavior (methods).

• Java is platform-independent. Platform-independence is a program’s capability of

moving easily from one computer system to another. Java’s slogan is "You can write

once and run anywhere." If you write a game using the Java programming language,

theoretically, you should be able to run that game on a PC, Linux, or Mac.

• Java supports the Internet by enabling people to write interactive programs for the

Internet. Java applets can easily be invoked from web browsers to provide valuable and

spectacular web pages.

Chapter 1 – Coding Introduction 54 | Page

© Daly & Wrigley

• Java is general purpose. Although used mainly for writing internet applications,

Java is a truly general-purpose language. Almost anything that most other

computer programming languages such as C++ or Visual Basic can do, Java can

also do. Java programs can be applets for the Internet or standalone applications

for local PCs.

o Applets appear in a web page much in the same way as images do, but

unlike images, applets are dynamic and interactive. Applets can be used to

create animations, games, ecommerce, etc.

o Applications are more general programs written in the Java language.

Applications don't need a browser. The Java language can be used to create

programs, like those made in other computer languages.

o Servlets are programs that respond to requests from clients.

• Java is secure. Since the Java program is isolated from the native operating system of a

computer, the Java program is insulated from the particular hardware on which it is run.

Because of this insulation, the Java Virtual Machine provides security against intruders

getting at your computer's hardware through the operating system.

• Java programs can contain multiple threads of execution, which enables programs to

handle several tasks simultaneously. For example, a multi-threaded program can render

an animation on the screen in one thread while continuing to accept keyboard input from

the user in the main thread. All applications have at least one thread.

• Java has multimedia capabilities of graphics, images, animations, audio and videos. It

also runs on networks.

• Java programs do their own garbage collection, which means that programs are not

required to delete objects that they allocate to memory. This relieves programmers of

virtually all memory-management problems.

• Java programs are reliable and robust. When a serious error is discovered, Java

programs create an exception. This exception can be captured and managed by the

program and then terminated gracefully.

• Java vs. JavaScript. The Java language was developed by Sun MicroSystems

and is a full programming language that can be used in applications or as applets

on the Internet. JavaScript was developed by Netscape as a scripting language to

be used only in HTML web pages.

Chapter 1 – Coding Introduction 55 | Page

© Daly & Wrigley

Programming Process

Develop an algorithm: Think about the problem before coding. Create a flowchart, storyboard,

or pseudo code to represent a solution to the problem.

Create Project: Create a new project in NetBeans. The NetBeans environment is known as our

IDE (Integrated Development Environment). There are many IDEs that can be downloaded free

of charge, but NetBeans provides many features that will be helpful to us for this course. In

NetBeans, when you create a project, it creates a folder structure. The following is an example of

a folder structure for a HelloWorld project created in NetBeans.

Code: Type the Java code. As you type, NetBeans checks your program for syntax errors. Red

lines indicate errors in your code. The Java code (HelloWorld.java) for the HelloWorld project

will be in the src folder in the folder structure above.

Compile: When you are finished typing the program, you will need to do a final compile of the

program (also known as building). The Java compiler checks your code for errors. If it compiles

with no syntax errors, it creates a class file (bytecode) that will be capable of running on

different operating systems. Bytecode are a set of instructions that look a lot like machine code,

but are not specific to any one processor. Compiling the HelloWorld.java creates the

HelloWorld.class file located in the build folder inside the classes subfolder in the folder

structure above.

Run: These bytecode are then fed to a JVM (Java Virtual Machine) where they are interpreted

and executed.

The JDK (Java Development Kit) includes the Java library (code), JVM, as well as the Java

compiler. The version of NetBeans that you installed included the JDK. Oracle owns Java and

it is constantly releasing new versions of the JDK. It is good to know what JDK you are using

so that you know what Java code is available to you. We will talk more about the Java library

and JDK in a later chapter. You can check to see what version of the JDK that you have by

clicking Help from the menu and then About in the NetBeans environment. The JDK version

shown below is 1.8. You do not need to put the update number which is the number after the

underscore.

Chapter 1 – Coding Introduction 56 | Page

© Daly & Wrigley

Java Program – HelloWorld.java

Java Class File – HelloWorld.class Errors Displayed in Output Window

Java Virtual Machine – Program Execution Fix program errors

NO YES
Java

Compiler

(Syntax

Errors?)

Chapter 1 – Coding Introduction 57 | Page

© Daly & Wrigley

Documentation

Comments are used to document code so that other people reading our code can understand our

logic. Comments are useful for adding extra information to our programs that we don’t

necessarily want to show up in the output of our program such as: author, date, JDK used,

program description, etc. Also, it is a good idea to comment your programs extensively when

you are just starting out so that you have well-documented examples.

A single line comment is represented by two forward slashes. This comment will continue until

the end of the line. This type of comment can be placed on a line by itself or it can be placed on

the end of a line of code to describe the code. The following are examples of a single line

comments.

//Single Line Comment

System.out.println(“Hello World”); //Prints "Hello World" to the output window

A multi-line comment is represented by a forward slash followed by an asterisk and an asterisk

followed by a forward slash to end the multi-line comment. The following is an example of a

multi-line comment.

/* Multi-Line

 Comment */

You can even be creative and separate your multi-line comments from your code by adding

asterisks after the first forward slash and before the last forward slash.

/**

 * Multi-Line Comment

 * Typical Java Documentation

 */

Note: Java documentation will be explained in a later chapter.

Alice Comments

Chapter 1 – Coding Introduction 58 | Page

© Daly & Wrigley

Program Errors

There are 3 different types of programming errors: compiler, run-time, and logic errors.

• Syntax errors are caused when the user writes code that is not understood by the

compiler. A syntax error can be caused by incorrect capitalization or spelling

mistakes. The compiler informs the user of a syntax error by displaying an error

message. Typing “Public Class” instead of “public class” would result in a syntax

error. NetBeans checks for errors as you type. If you see a red exclamation point

before a line of code, you can hover over it with your mouse to see the error.

This line of code should have been: System.out.println("Hello World");

• Run-time errors are caused by invalid data. Run-time errors do not affect the

compilation of your program thus the program will compile and execute, but it

may crash or hang after execution. If you try to divide 12 by 0 you would get a

run-time error because you cannot divide by 0.

• Logic errors (also known as human error) are caused by mistakes that do not

defy the rules of the language and do not crash or hang the program, but instead

yield incorrect results. The user may not understand the problem that the program

is trying to solve and therefore uses the wrong equation, wrong strategy, etc. An

example of a logic error would be moving left instead of right.

Chapter 1 – Coding Introduction 59 | Page

Java Basics

Statements

A statement is the simplest thing you can do in Java. A Java statement forms a single Java

operation. Each statement generally ends with a semicolon. The following statement will print

“Hello World” to the screen. The println command, known as a method in Java will do the

printing and the word out signifies the object to to the printing to which is the screen. The “Hello

World” is the text to be printed, the text in Java is known as a string. Java string literals are

written as a sequence of characters in double quotes.

System.out.println("Hello World");

This println method will print the following to the output window.

You can also use the print method in Java, but your text will not appear on a new line in the output

window. The println will cause the “Hello World” to be printing on separate line. The ln stands

for line.

We will also be using coding that will be known as blocks of code. Blocks of code are surrounded

by curly braces { }. We will be putting our statements that we write into a block of code known as

the main method. When we run our programs to see the results, everything in the main method

will happen automatically. You will not understand the words that are used to create this method

until later in the text, but just know for now that every application that we create will have this

main method and it will automatically be created for you and it will automatically run when you

run your program.

The main method will be located inside of our class. Our class represents our file and the main

method should always be inside of it. You will not understand the words used to create the class

file at this time, but we will talk about this later in the text.

Chapter 1 – Coding Introduction 60 | Page

© Daly & Wrigley

We could keep writing println statements in order to print multiple lines of code. Be sure to use

println instead of print to get separate lines. We will practice this in the hands-on exercises.

Escape Codes

You can use escape codes to add new lines, quotes, etc. to your strings.

 \n Newline

 \t Tab

 \\ Displays a Backslash

 \' Displays a single quote

 \" Displays a double quote

Strings can contain character escape codes such as the " (double quote) or ' (single quote) by

including a backslash in front of it. The \" tells it to print the special character of a double

quotes.

Chapter 1 – Coding Introduction 61 | Page

© Daly & Wrigley

We could use the \n escape code to get new lines in our code instead of using a separate

println statement for every line.

You will notice that the code is past the red line in NetBeans. This red line shows the

printing area. Anything past the red line will be printed on a new sheet if you were to

print your code. We should try not to write our code past this line. If you hit enter before

the \n after the following sentence: “We are learning how to code.” You will notice that

NetBeans creates two strings joined by a plus sign. This is known as string

concatenation. You will notice that joining the string on separate lines, does not change

the output. You need to add your \n escape codes inside your strings to add new lines to

your output result. Be careful not to add extra spaces before and after your escape codes

or Java will add extra spaces to your actual output. We will practice this in the hands-on

exercises.

Chapter 1 – Coding Introduction 62 | Page

© Daly & Wrigley

Hands-on Exercises

Exercise 1: Compiling and Executing a Java Program

1. Open up the NetBeans environment.

2. You can close the Start Page. The tutorials provided in the Start Page can be confusing

for a first timer.

3. Select the File menu and then choose New Project. Then choose Java Application as

shown below.

Chapter 1 – Coding Introduction 63 | Page

© Daly & Wrigley

4. Click Next. Name your NetBeans project, select the location of where you would like to

save your file, give your file (Main Class) a name (make this name the same as your

project name), and click finish. Although it is not necessary, we are going to name our

projects and Java files (main class) have the same name. Therefore, make sure that the

top and bottom boxes have the same name. NetBeans automatically will try to name your

file (main class) helloworld.HelloWorld. Erase the helloworld. that NetBeans inserts

before your file name. Make sure it looks like the following screenshot. Capitalization is

important.

Project the name HelloWorld (no spaces)

Main class name of HelloWorld (no spaces)

Select the Location of where you would like to save your NetBeans project

5. If line numbers are not showing, click View from the menu, then Show Line Numbers.

Chapter 1 – Coding Introduction 64 | Page

© Daly & Wrigley

6. Your project should look as follows. HelloWorld.java is the file that we will be working

with. (Note: If your code has a package statement on line 5, then exit NetBeans and

delete the project folder and do step 4 again. Make sure it looks like the screen shot

provided. Look carefully at the textbox next to the Create Main Class label in the New

Java Application dialog. For your information a package in Java is a folder. The

package line indicates that you put your file in a folder when you created the project.)

7. Type in the following Java program. You will need to delete some comment lines and

add some lines. Be careful to make your program look exactly as shown below. Try to

keep your statements on the same lines as those shown below and also try to use the same

approximate indentation to make your program more understandable. Change line 3 to be

your name, line 4 to be today’s date, and line 5 to be the JDK version that you are using

(You can check to see what version of the JDK that you have by clicking Help from the

menu and then About in the NetBeans environment. It will have Java: and then a

number, this is your JDK version. You do not need the number after the underscore).

Chapter 1 – Coding Introduction 65 | Page

© Daly & Wrigley

What does the above program do? You will not understand everything about this

program YET. However, here is a brief explanation line by line:

1-6) Lines 1-6 are known as comments. Comments are used to document code so that

other people reading our code can understand our logic. Comments are useful for

adding extra information to our programs that we don’t necessarily want to show up

in the output of our program such as: author, date, JDK used, program description,

etc. Also, it is a good idea to comment your programs extensively when you are just

starting out so that you have well-documented examples. This is a multi-line

comment which is represented by a /* at beginning of comment and */ to end the

multi-line comment.

7) Blank line for readability purposes. Does nothing. (not necessary)

8) States this will be a public program called HelloWorld. Class names should begin

with a capital letter. Be careful of capitalization in Java programs.

9) Blank line for readability purposes. Does nothing. (not necessary)

10) This is the main method declaration in this Java application. Every Java application

must contain a main method and it must always be public static. The arguments for a

method always appear in parentheses. In this case, the argument is a String array

called args. The variable name of args can be whatever the programmer wants it to

be, but most programmers use the variable name of args. The square brackets

appearing after the word String are found to the right of the "P" key on keyboard.

11) The statement of System.out.println("Hello World"); prints Hello World to the

screen and positions the insertion point on the next line. System is a Java class in the

library and the out object is the screen. Java is case sensitive so be careful of

capitalization. Java uses a punctuation method of class-dot-object-dot-method

syntax. All methods have arguments in parenthesis which is a way of telling a

Chapter 1 – Coding Introduction 66 | Page

© Daly & Wrigley

method from a variable. This println method has an argument of a literal string of

"Hello World". All Java statement lines will end with a semicolon.

 Note: The next to last character in "println" is a lowercase L, not the number 1.
12) A right curly brace ends the main method. It is important to balance all your left and

right curly braces and left and right parentheses in all Java programs. The right curly

brace is found 2 keys to the right of the P key on keyboard.

13) A right curly brace to end the program.

8. This Java program needs compiled. Compiling a program will have the computer look at

each line of your program for syntax errors such as typos, mispunctuation, etc. To

compile your program, click on Run from the File menu, then Build Project. The

compiler will check this file for syntax errors and let you know on what lines you made

errors. Errors (along with line numbers of errors) will list in bottom panel of the screen. If

you have errors, correct your typos on the top of the screen and compile again. Make sure

you adjust the bottom output panel large enough to see your errors and your output.

9. If there are no compilation errors (denoted by the words BUILD SUCCESSFUL), the

compiler will convert this Java program into a bytecode file called HelloWorld.class.

This bytecode file is a generic file that may be used on any operating system. This file is

located under the project folder, under the build folder, and in the classes folder.

10. Once compiled and you have a bytecode file (.class file extension), you are ready to

have the Java interpreter execute your Java program. To execute your first Java program,

you will click on Run from the NetBeans menu, then Run Project. “Hello World”

should be displayed in the output window as shown below:

11. The process you have seen so far is typing a Java program into NetBeans, compiling a

Java program, and executing the Java program. This is the process that you will be going

through over and over as you progress through Java. The output that you have at bottom

of screen is simply the computer displaying the words "Hello World".

Chapter 1 – Coding Introduction 67 | Page

© Daly & Wrigley

12. Now, let's adjust the Java program. Add the following line as shown in the diagram

below. (Note: if you type sout and hit the tab key, it will type the System.out.println("");

line for you.)

System.out.println("Your name");

13. Now, save the new version of the program by clicking on Save from the File menu. (DO

NOT click “Save As” and save this outside the project folder. NetBeans has a file

structure and you cannot pull your files out of this structure or else NetBeans will not

open them in the future. Compile the program (Run menu and then Build Project).

14. Execute the program (Run menu and then Run Project). Your display window should

look similar to the following:

Note: If you are getting compiler errors at bottom of screen, please double check the

capitalization, spelling, and punctuation.

15. To ensure that your code indentation is correct, you should always choose Source from

the menu, then Format. Make sure that you compile your program (Run menu, Build

Project) and run it (Run menu, Run Project).

16. Close the project by right clicking on the project on the left pane and choosing Close.

Chapter 1 – Coding Introduction 68 | Page

© Daly & Wrigley

17. Choose File, Open Project…, select the HelloWorld NetBeans project (should have a

coffee cup next to your project), and click Open Project.

Chapter 1 – Coding Introduction 69 | Page

© Daly & Wrigley

18. Open your code, by expanding the HelloWorld project folder, then expanding the

Source Package folder, then expanding the default package folder (this is default since

we did not name this folder when we created the project) as shown below. You will need

to double click on the HelloWorld.java file to open the code.

19. You will now purposely make some errors in your program. Change the spelling

of println to be printline as follows:

 System.out.printline("Hello World");

20. Compile the program by clicking on Run menu and choosing Build Project. You should

get an error at the bottom of your screen as follows:

Chapter 1 – Coding Introduction 70 | Page

© Daly & Wrigley

21. It is telling you that there is an error on line 11. It could not find a method spelled as

printline. Some errors will be obvious and those are the nice ones to solve. Change the

word printline to be println so that this error is corrected.

22. Compile the program. You should be rid of all errors and it should say BUILD

SUCCESSFUL. Lesson learned: Names must be spelled exactly as Java expects.

23. Change line 11 by deleting the opening set of double quotes around Hello World as follows:

System.out.println(Hello World");

24. Compile the program. You should get 3 errors at the bottom of your screen:

Chapter 1 – Coding Introduction 71 | Page

© Daly & Wrigley

25. So, why would you get multiple error messages when you just made one mistake? This

can happen. You may even get 15 errors for just one mistake. It really depends upon what

mistake you make. In this case, it is saying it doesn't understand the Hello World and is

saying it thinks it needs a parenthesis. This is not really the case. What it needs is a string

enclosed in double quotes, but the error it shows is not real helpful. Now, insert the double

quote back in front of the word Hello.

26. Compile the program. You should be rid of all errors. Lesson learned: The Java compiler

doesn't always pinpoint the exact error. You must learn to look for errors anywhere on that

line or previous line.

27. Not all errors are compilation errors. We now have a bug-free (no errors) Java program.

Chapter 1 – Coding Introduction 72 | Page

© Daly & Wrigley

28. A programmer sometimes makes logic errors. Change line 11 to say:

System.out.println("Helo Warld");

Note: Hello and World are incorrectly spelled.

29. Compile the program. The program should get a compile with BUILD SUCCESSFUL.

However, when this program is executed (RUN menu, then RUN MAIN PROJECT), you

will not get the words displayed that you wanted. The reason that you get no errors in the

compilation is because the words inside of double quotes can be anything. The computer

has no idea what you are trying to accomplish. It will display anything that is in double

quotes and doesn't check that part for incorrect spellings.

30. Please fix all of your errors and recompile. NetBeans automatically saves files when your

project is compiled.

31. Let’s adjust your println statements to use the print method instead of println. You should

see that our text is all on one line. This doesn’t look as nice as before.

32. Let’s fix this by taking out the second print statement and adding a \n escape code to get

your name to print on a new line.

Chapter 1 – Coding Introduction 73 | Page

© Daly & Wrigley

33. It might look better if we changed our print statement to a println statement so that the

build information is on a new line.

You can also put the code that prints your name on a separate line of code, but it won’t

change your result in the output window.

34. Close the HelloWorld project by right clicking on the project in the left pane as shown

below:

Chapter 1 – Coding Introduction 74 | Page

© Daly & Wrigley

Exercise 2: Drawing a Triangle Shape

1. Open up the NetBeans environment.

2. Select the File menu and then choose New Project. Then choose Java Application as

shown below.

3. Click Next. Name your NetBeans project, select the location of where you would like to

save your file, give your file (Main Class) a name (make this name the same as your

project name), and click finish. Although it is not necessary, we are going to name our

projects and Java files (main class) have the same name. Therefore, make sure that the

top and bottom boxes have the same name. NetBeans automatically will try to name your

file (main class) triangle.Triangle. Erase the triangle. that NetBeans inserts before your

file name. Make sure it looks like the following screenshot. Capitalization is important.

Project the name Triangle (no spaces)

Main class name of Triangle (no spaces)

Select the Location of where you would like to save your NetBeans project

Chapter 1 – Coding Introduction 75 | Page

© Daly & Wrigley

4. If line numbers are not showing, click View from the menu, then Show Line Numbers.

5. Your project should look as follows. HelloWorld.java is the file that we will be working

with. (Note: If your code has a package statement on line 5, then exit NetBeans and

delete the project folder and do step 4 again. Make sure it looks like the screen shot

provided. Look carefully at the textbox next to the Create Main Class label in the New

Java Application dialog. For your information a package in Java is a folder. The

package line indicates that you put your file in a folder when you created the project.)

Chapter 1 – Coding Introduction 76 | Page

© Daly & Wrigley

6. Let’s set up our program by deleting the current program comments as shown below.

7. Now we will add our comments (documentation) to the top of our program. We will add

our name, today’s date, a description of the program, and the JDK version to the top of all

of our programs. (You can check to see what version of the JDK that you have by clicking

Help from the menu and then About in the NetBeans environment. It will have Java: and

then a number, this is your JDK version. You do not need the number after the underscore).

8. Next, we need to add the Java code that will print our triangle shape. We will use spaces

and the * symbol as text in our println method to draw our shape. Please add the following

println statements to your main method.

Chapter 1 – Coding Introduction 77 | Page

© Daly & Wrigley

9. Finally, we need to test our program to ensure that the triangle shape looks good in our

output window. Run the program, by clicking on the Run button. You shouldn’t have any

red underlines in your program code. If you do, you will need to compare your code with

the code shown below to determine what is different that is causing the problem. Code

highlighted with red underlines are known as syntax errors.

Chapter 1 – Coding Introduction 78 | Page

© Daly & Wrigley

10. Your output should look as follows.

Note: When you run your program in NetBeans, it should save the files automatically, but

if you are unsure you can save. DO NOT use the “Save as” option in NetBeans. You

can go to File and choose Save or you can use the shortcut command to save (Windows:

ctrl + s, Mac: command + s). You can tell if the file is saved by looking at the tabs. If the

filename is bold, then it has not been saved recently. If it is not bold, then it is saved.

When you close NetBeans, it should warn you if you haven’t saved. Please do not right

click and rename Java files. Renaming Java files, will mess up the structure of your

NetBeans projects and they won’t work correctly. This is why I recommend you stay

away from the “Save As” option; if you change the name or the location of your Java

files, they won’t work properly next time you open them.

 vs.

11. This could also be written using the \n escape code and it would have the same output

result. Either way of coding is fine. Note: if you are joining two strings on separate lines,

it doesn’t matter which line you put the plus sign for the concatenation of the strings. You

cannot have two plus signs in a row.

Or you can write the code with the concatenation operator (plus sign) on the other line:

Chapter 1 – Coding Introduction 79 | Page

© Daly & Wrigley

 You cannot have the concatenation operator (plus sign) twice in a row.

You will get an error that states bad operand type String for unary operator '+'

If you hover over the exclamation mark on the line numbers, you can see the errors without

buiding the project.

12. Close the Triangle project by right clicking on the project in the left pane and choosing

Close.

Chapter 1 – Coding Introduction 80 | Page

© Daly & Wrigley

Summary

• Line by line instructions that tell a computer how to perform a task are called a computer

program.

• A programming language that is written at the very low technical circuitry level of the

computer is called a low-level programming language.

• High-level programming languages allow programmers to write programs using

English terms.

• James Gosling at Sun Microsystems is credited with creating Java programming

language. It was brought to the public in 1995.

• Java is an object-oriented programming language that is platform-independent. The Java

slogan is "You can write once and run anywhere." The compiler creates a bytecode file

(with class extension) that can be used on all types of computer systems (MAC, Linux,

Windows, etc.) Bytecode is then fed to a Java Virtual Machine (JVM) where they are

interpreted and executed.

• Computer languages each have their own syntax, or rules of the language.

• When you write a program, indenting is important so that you and other humans can

understand your program.

• In every program that you write, there should be comment lines at the beginning of

program. There should be a description of the program, author (you), date, and the JDK

used for the program.

• Compilation error messages try to pinpoint the problem in your program but they are not

always helpful. You may have to look around for the error or correct just the errors that

you do understand and then compile again. You will get better at doing this and

understanding this with additional experience.

• If your program is compiling fine, there still is no guarantee that it will work. An error-

free compilation program only means that the Java compiler understands your

commands, but the commands may not do what you want.

• The curly braces in Java are crucial. The symbols { } are generally found to the right of

the "P" key.

• Programming can be very frustrating, but it also can be rewarding when you succeed.

Chapter 1 – Coding Introduction 81 | Page

© Daly & Wrigley

Review Questions

1. JDK stands for:

a. Java Details Kit

b. Java Development Kit

c. Java Decoder Kit

d. Java Debugger Kit

2. All programming languages work on the Internet.

a. True

b. False

3. Java and JavaScript are the same programming language.

a. True

b. False

4. There are many high-level programming languages for computers.

a. True

b. False

5. The rules of a programming language are its ___________.

a. Vocabulary

b. Syntax

c. Logic

d. Flowchart

6. Arguments to methods appear within

a. Parentheses

b. Semicolons

c. Curly braces

d. Quotation marks

7. All Java application programs must have a method called _______.

a. hello

b. system

c. main

d. Java

8. Non-executing program statements that provide documentation to humans are called

____________.

a. Notes

b. Classes

c. Commands

d. Comments

Chapter 1 – Coding Introduction 82 | Page

© Daly & Wrigley

9. Once a program has compiled without errors, it will always execute perfectly.

a. True

b. False

10. A computer ___________ tells a computer how to perform a task.

a. Switch

b. Program

c. Interface

d. Guide

11. Look at the Java program at the top of the following illustration. This Java program was

compiled and the compilation errors appear at bottom of screen. What needs to be

corrected to make this program compile correctly?

a. Change line 1 to say FirstJavaProgram instead of Error1

b. Change line 3 to say first instead of main

c. Change line 4 to say System instead of system

d. Change line 4 to say "Hello World" instead of "First Java Program"

12. Look at the Java program at the top of the following illustration. This Java program was

compiled and the Compilation errors appear at bottom of screen. What needs to be

corrected to make this program compile correctly.

a. Change line 1 to have semicolon at end of it.

b. Change line 3 to have semicolon at end of it.

c. Change line 4 to have semicolon at end of it.

d. Change line 5 to have semicolon at end of it.

Solutions: 1) b 2) b 3) b 4) a 5) b 6) a 7) c 8) d 9) b 10) b 11) c 12) c

Chapter 1 – Coding Introduction 83 | Page

© Daly & Wrigley

Assignments

1-1 Printing Initials: Your goal is to print your initials in block letters

• Analyze and understand the problem to be solved. Display your initials in block

letters.

• Develop the logic to solve the program. We can graph the block letters on graph

paper, so we can see the spacing. The letters should be about 7 by 7 characters wide

and have 5 spaces in between letters.

Below is a blank grid so that you can draw your initials.

Sample solution for initials YN (your name). You should not use YN unless your

initials are YN.
Y Y N N

 Y Y N N N

 Y Y N N N

 Y N N N

 Y N N N

 Y N N N

 Y N N

• Code the solution in a programming language. We will need to code 7 print

statements to accomplish the above graphic of the “YN” block letters. The spacing in

these System.out.println statements must be perfect. Enter the coded solution into a

new project in NetBeans. Name this project Initials.

• Test the program.

Chapter 1 – Coding Introduction 84 | Page

© Daly & Wrigley

1-2 Drawing a Face: Your goal is to draw an ASCII art face. You can use any symbol that

you want to make your drawing (*, -, etc.) and your face can be any emotion that you want

(smiley, sad, surprised, etc.).

• Analyze and understand the problem to be solved. Draw a face using ASCII art.

• Develop the logic to solve the program. We can draw the face on graph paper, so we

can see the spacing.

Below is a blank grid so that you can draw your face.

Example of a smiley face. Do not use this exact drawing. Make your own.
 * * *

 * * *

* *

 * *

 * * *

 * * *

 * *

*

 *

 *

 *

 *

 *

 * *

 * * * * * *

• Code the solution in a programming language. We will need to code print

statements to accomplish the above drawing. The spacing in these System.out.println

statements must be perfect. Enter the coded solution into a new project in NetBeans.

Name this project Emotion.

• Test the program.

Chapter 1 – Coding Introduction 85 | Page

