16.2 Finding Domain and Range

Finding a Function's Domain:

1.) The domain is the set of all real numbers, $(-\infty, \infty)$, unless x appears in a

denominator or a square root.

2.) "Fraction" – the denominator can <u>NOT</u> equal 0.

→ Set the **denominator** \neq **0** and solve.

3.) Square Root – radicand must be greater than or equal to 0.

→ Set the **radicand** ≥ 0 and solve.

Ex. Determine the domain of f. Write the domain in both <u>interval notation</u> and <u>set-builder notation</u>.

(a)
$$f(x) = 5x + 3$$
 (b) $f(x) = \sqrt{x-5}$

(c)
$$f(x) = |3x-4|$$
 (d) $f(x) = \frac{6-x}{2x+7}$

REVIEWING FUNCTION NOTATIONEx. Using the given graph, find the value of:

- (c) f(0) =_____
- (d) any *x*-values for which f(x) = -2
- (e) the domain
- (f) the range

- (a) f(-3) =_____
- (b) f(0) =_____
- (c) f(1) =_____
- (d) any x-values for which f(x) = 4
- (e) the domain
- (f) the range