18.3 Absolute-Value Equations and Inequalities

* Absolute Value: the distance from zero on a number line.

Ex. $|x|=5$

The variable can have a value of either 5 or -5 because both of these numbers are 5 units from zero on the number line.

Absolute Value Property

If $|x|=a$, where x is a variable or an expression and $a \geq 0$, then $x=a$ or $x=-a$.

Ex. Solve. Write the solution in set notation.
(a) $|x|=9$
(b) $|p|=0$
(c) $|x|=-3$

In general, the following is true:
If a is positive, the equation $|x|=a$ has two solutions, a and $-a$.
If a is 0 , the equation $|x|=a$ has one solution, 0 .
If a is negative, the equation $|x|=a$ has no solution.

Ex. Solve. Write the solution in set notation.
(a) $|x+2|=3$.
(b) $|3 x|=-8$
(c) $|5 x|-3=37$
(d) $3-2|x|=-7$

* Absolute Value Inequalities

The solution set of $|x|<5$ contains all numbers whose distance from 0 is less than 5 units on the number line.

The solution set of $|x|>5$ contains all numbers whose distance from 0 is more than 5 units on the number line.

Absolute Value Inequalities of the Form $|X|<a$

If a is a positive number, then $|X|<a$ is equivalent to $-a<X<a$, where X is a variable or an expression.
This property also holds true for the inequality symbol \leq.

Ex. Solve. Write the solution in set-builder notation.
(a) $|y-2| \leq 5$
(b) $|x+1|+11<9$
(c) $-17+|3+5 x|<-4$
(d) $|3 x+6| \leq 0$

Absolute Value Inequalities of the Form $|X|>a$

If a is a positive number, then $|X|>a$ is equivalent to $X<-a$ or $X>a$, where X is a variable or an expression. This property also holds true for the inequality symbol \geq.

Ex. Solve. Write the solution in set-builder notation.
(a) $|y-2| \geq 5$
(b) $|x+1|+11>9$
(c) $-17+|3+5 x|>-4$
(d) $|3 x+6| \geq 0$

