19.1 Radical Expressions and Functions

* Square Roots

Square Root

The number c is a square root of a if $c^{2}=a$.
Ex. Find the square roots of 49 .

Principal Square Root

The principal square root of a nonnegative number is its nonnegative square root.
Ex. The principal square root of 16 is 4 .

Radical sign: $\sqrt{ }$

Radicand: the expression under the radical sign (ex. $\sqrt{5}, \sqrt{a},-\sqrt{3 x}, \sqrt{\frac{y^{2}+7}{y}}$) Index (plural, indices): $\sqrt[n]{a}$ for nth root \rightarrow the number n is called the index.

Ex. Identify the radicand and the index for each expression.
(a) $-7 \sqrt{y^{2}-8}$
(b) $a^{2} b^{5} \sqrt[3]{\frac{a}{a^{2}-b}}$

Ex. Simplify
(a) $\sqrt{196}$
(b) $-\sqrt{\frac{81}{144}}$
(c) $\sqrt{0.36}$

Square roots of perfect square radicands simplify to rational numbers. What happens when we try to simplify a root such as $\sqrt{11}$?

Use a calculator to approximate $\sqrt{11}$ to 3 decimal places. Check to see that your approximation is reasonable.

* Expressions of the Form $\sqrt{a^{2}}$

Simplifying $\sqrt{a^{2}}$
For any real number a,

$$
\sqrt{a^{2}}=|a| .
$$

(The principal square root of a^{2} is the absolute value of a.)
Ex. Simplify each expression. Assume that the variable can represent any real numbers.
(a) $\sqrt{25 t^{2}}$
(b) $\sqrt{x^{2}-8 x+16}$
(c) $\sqrt{x^{16}}$
(d) $\sqrt{(r-1)^{4}}$

* Cube Roots

Cube Root

The number c is the cube root of a if $c^{3}=a$. In symbols, we write $\sqrt[3]{a}$ to denote the cube root of a.
Ex. Simplify (a) $\sqrt[3]{64}$
(b) $-\sqrt[3]{-125 y^{6}}$

Odd and Even \boldsymbol{n} th Roots $\sqrt[n]{a}$

Odd Roots

Odd roots of positive numbers are positive.
Odd roots of negative numbers are negative.
Absolute-value signs are not used when finding odd roots.

Even Roots

Even roots of positive numbers are positive.
Negative numbers do not have real nth roots when n is even.
Absolute-value signs are often necessary when finding even nth roots.

Ex. Simplify. Assume that the variables represent any real numbers. Remember to use absolute-value notation when necessary.
(a) $\sqrt[5]{-\frac{32}{243}}$
(b) $\sqrt[6]{(x-5)^{6}}$
(c) $\sqrt[4]{(-2)^{4}}$

Ex. Simplify. Assume that all variables represent nonnegative numbers.
(a) $\sqrt{\frac{y^{10}}{9 x^{6}}}$
(b) $\sqrt[5]{-243 a^{15}}$
(c) $-\sqrt[4]{\frac{16 m^{4}}{n^{20}}}$

* Radical Functions and Models

Radical Function: a function that can be describe by a radical expression.
Ex. For $g(x)=\sqrt{x^{2}-25}$, find the specified function value, if it exists.
(a) $g(-6)$
(b) $g(3)$
(c) $g(13)$

Ex. For $g(x)=-\sqrt[3]{2 x-1}$, find the specified function value, if it exists.
(a) $g(-13)$
(b) $g(63)$

The square-root function: $f(x)=\sqrt{x} \quad$ Domain: $[0, \infty)$ or $\{x \mid x \geq 0\}$
Graph $f(x)=\sqrt{x}$.
Ex. Determine the domain of each function described.
(a) $f(x)=\sqrt[4]{x-7}$
(b) $g(t)=\sqrt[3]{2 t-5}$
(c) $H(x)=5-\sqrt[8]{1-4 x}$
(d) $P(x)=2+\sqrt{3 x-5}$

