19.1 Radical Expressions and Functions

* Square Roots

<u>Square Root</u>

The number c is a square root of a if $c^2 = a$.

Ex. Find the square roots of 49.

Principal Square Root

The principal square root of a nonnegative number is its nonnegative square root.

Ex. The principal square root of 16 is 4.

<u>Radical sign</u>: $\sqrt{}$

<u>Radicand</u>: the expression under the radical sign (ex. $\sqrt{5}$, \sqrt{a} , $-\sqrt{3x}$, $\sqrt{\frac{y^2+7}{y}}$)

<u>Index</u> (plural, <u>indices</u>): $\sqrt[n]{a}$ for *n*th root \rightarrow the number *n* is called the index.

Ex. Identify the radicand and the index for each expression.

(a)
$$-7\sqrt{y^2-8}$$
 (b) $a^2b^5\sqrt[3]{\frac{a}{a^2-b}}$

Ex. Simplify

(a)
$$\sqrt{196}$$
 (b) $-\sqrt{\frac{81}{144}}$ (c) $\sqrt{0.36}$

Square roots of **perfect square** radicands simplify to **rational numbers**. What happens when we try to simplify a root such as $\sqrt{11}$?

Use a calculator to approximate $\sqrt{11}$ to 3 decimal places. Check to see that your approximation is reasonable.

***** Expressions of the Form $\sqrt{a^2}$

Simplifying $\sqrt{a^2}$ For any real number *a*, $\sqrt{a^2} = |a|$. (The principal square root of a^2 is the absolute value of *a*.)

Ex. Simplify each expression. Assume that the variable can represent <u>*any real*</u> <u>*numbers*</u>.

(a) $\sqrt{25t^2}$ (b) $\sqrt{x^2 - 8x + 16}$

(c)
$$\sqrt{x^{16}}$$
 (d) $\sqrt{(r-1)^4}$

Cube Roots

Cube Root

The number c is the cube root of a if $c^3 = a$. In symbols, we write $\sqrt[3]{a}$ to denote the cube root of a.

Ex. Simplify (a) $\sqrt[3]{64}$

(b) $-\sqrt[3]{-125y^6}$

***** Odd and Even *n*th Roots $\sqrt[n]{a}$

Odd Roots

Odd roots of <u>positive</u> numbers are <u>positive</u>. Odd roots of <u>negative</u> numbers are <u>negative</u>. Absolute-value signs are <u>not</u> used when finding odd roots.

Even Roots

Even roots of <u>positive</u> numbers are <u>positive</u>. Negative numbers **do not** have real *n*th roots when *n* is even. Absolute-value signs are often necessary when finding even *n*th roots. **Ex.** Simplify. Assume that the variables represent <u>*any real numbers*</u>. Remember to use absolute-value notation when necessary.

(a)
$$\sqrt[5]{-\frac{32}{243}}$$
 (b) $\sqrt[6]{(x-5)^6}$ (c) $\sqrt[4]{(-2)^4}$

Ex. Simplify. Assume that all variables represent <u>nonnegative numbers</u>. (a) $\sqrt{\frac{y^{10}}{9x^6}}$ (b) $\sqrt[5]{-243a^{15}}$ (c) $-\sqrt[4]{\frac{16m^4}{n^{20}}}$

Radical Functions and ModelsRadical Function: a function that can be describe by a radical expression.

Ex. For $g(x) = \sqrt{x^2 - 25}$, find the specified function value, if it exists. (a) g(-6) (b) g(3) (c) g(13)

Ex. For $g(x) = -\sqrt[3]{2x-1}$, find the specified function value, if it exists. (a) g(-13) (b) g(63)

The square-root function: $f(x) = \sqrt{x}$ Domain: $[0, \infty)$ or $\{x \mid x \ge 0\}$ Graph $f(x) = \sqrt{x}$.

Ex. Determine the domain of each function described. (a) $f(x) = \sqrt[4]{x-7}$ (b) $g(t) = \sqrt[3]{2t-5}$

(c)
$$H(x) = 5 - \sqrt[8]{1-4x}$$
 (d) $P(x) = 2 + \sqrt{3x-5}$