19.3 Simplifying Radical Expressions

* Multiplying Radical Expressions

The Product Rule for Radicals
For any real numbers $\sqrt[n]{a}$ and $\sqrt[n]{b}$,

$$
\sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a \cdot b}
$$

(To multiply, when the indices match, multiply the radicands.)
Ex. Multiply and simplify, if possible. Assume that all expressions under radicals represent nonnegative numbers.
(a) $\sqrt[3]{10} \cdot \sqrt[3]{4}$
(b) $\sqrt{50 a^{3} b^{2}} \cdot \sqrt{2 a b^{4}}$
(c) $\sqrt[4]{21 r^{3}} \cdot \sqrt[4]{2 r}$
(d) $3 c \sqrt{15 c^{2}} \cdot 2 \sqrt{10 c^{5}}$

* Simplifying by Factoring

Using the Product Rule to Simplify

$$
\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}
$$

Ex. Simplify. Assume that all expressions under radicals represent nonnegative numbers.
(a) $\sqrt{45}$
(b) $\sqrt[3]{-32 a^{6} b}$
(c) $4 \sqrt{50 x^{5}}$
(d) $a^{2} b^{3} \sqrt[5]{a^{13} b^{6} c^{17}}$

* Dividing and Simplifying

The Quotient Rule for Radicals

For any real numbers $\sqrt[n]{a}$ and $\sqrt[n]{b}, b \neq 0$,

$$
\frac{\sqrt[n]{a}}{\sqrt[n]{b}}=\sqrt[n]{\frac{a}{b}}
$$

Ex. Simplify by taking roots of the numerator and the denominator.
Assume that all expressions under radicals represent nonnegative numbers.
(a) $\sqrt{\frac{100}{81}}$
(b) $\sqrt{\frac{14}{x^{2}}}$
(c) $\sqrt[3]{\frac{64 x^{7}}{216 y^{6}}}$
(d) $\sqrt[4]{\frac{81 x^{4}}{y^{8} z^{4}}}$

Ex. Divide and, if possible, simplify. Assume that all expressions under radicals represent nonnegative numbers.
(a) $\frac{\sqrt[3]{270}}{\sqrt[3]{10}}$
(b) $\frac{\sqrt{56 a b^{3}}}{\sqrt{7 a}}$
(c) $\frac{\sqrt[5]{64 a^{11} b^{28}}}{\sqrt[5]{2 a b^{-2}}}$
(d) $\frac{15 \sqrt{24 a^{7} b^{3}}}{5 \sqrt{2 a^{2}}}$

Ex. Simplify. Assume that all expressions under radicals represent nonnegative numbers.
(a) $\sqrt[4]{a^{3}} \cdot \sqrt[3]{a^{2}}$
(b) $\frac{\sqrt[3]{x^{2}}}{\sqrt[5]{x}}$

