19.8 The Complex Numbers

***** Imaginary and Complex Numbers

Negative numbers <u>do not</u> have square roots in the <u>real-number system</u>. Negative numbers <u>do</u> have square roots in the <u>complex-number system</u>.

The Number *i* (Imaginary Unit)

We define the number *i* such that $i = \sqrt{-1}$ and $i^2 = -1$.

Imaginary Numbers

An *imaginary number* is a number that can be written in the form bi, where b is a real number and $b \neq 0$.

Ex. Express in terms of *i*. (a) $\sqrt{-36}$

(b)
$$-\sqrt{-75}$$

(c)
$$\sqrt{-84}$$
 (d) $\sqrt{-18} - \sqrt{-100}$

Complex Numbers

A *complex number* is any number that can be written in the form a + bi, where a and b are real numbers. (Note that a and b both can be 0.)

Addition and Subtraction

Ex. Add or subtract and simplify. Write each answer in the form a+bi. (a) (4-5i)+(3+9i) (b) (-5-i)-(7+4i)

(c)
$$(14-7i)+(-8-9i)$$
 (d) $(5-2i)-(9-14i)+(16i)$

***** Multiplication

Ex. Multiply and simplify. Write each answer in the form a + bi. (a) $7i \cdot (-6i)$ (b) $\sqrt{-36} \cdot \sqrt{-9}$

(c)
$$5i(2+6i)$$
 (d) $(6-5i)(3+4i)$

* Dividing Complex Numbers
Ex. Divide: (a)
$$\frac{6-\sqrt{-27}}{3}$$
 (b) $\frac{24+\sqrt{-40}}{-8}$

Conjugate of a Complex Number The *conjugate* of a complex number a + bi is a - bi, and the conjugate of a - bi is a + bi.

Ex. Multiply: (3+i)(3-i)

Ex. Divide and simplify to the form a + bi.

(a)
$$\frac{4}{3+i}$$
 (b) $\frac{2+7i}{5i}$