19.8 The Complex Numbers

* Imaginary and Complex Numbers

Negative numbers do not have square roots in the real-number system.
Negative numbers do have square roots in the complex-number system.

The Number \boldsymbol{i} (Imaginary Unit)

We define the number i such that $i=\sqrt{-1}$ and $i^{2}=-1$.

Imaginary Numbers

An imaginary number is a number that can be written in the form $b i$, where b is a real number and $b \neq 0$.

Ex. Express in terms of i.
(a) $\sqrt{-36}$
(b) $-\sqrt{-75}$
(c) $\sqrt{-84}$
(d) $\sqrt{-18}-\sqrt{-100}$

Complex Numbers

A complex number is any number that can be written in the form $a+b i$, where a and b are real numbers. (Note that a and b both can be 0 .)

* Addition and Subtraction

Ex. Add or subtract and simplify. Write each answer in the form $a+b i$.
(a) $(4-5 i)+(3+9 i)$
(b) $(-5-i)-(7+4 i)$
(c) $(14-7 i)+(-8-9 i)$
(d) $(5-2 i)-(9-14 i)+(16 i)$

* Multiplication

Ex. Multiply and simplify. Write each answer in the form $a+b i$.
(a) $7 i \cdot(-6 i)$
(b) $\sqrt{-36} \cdot \sqrt{-9}$
(c) $5 i(2+6 i)$
(d) $(6-5 i)(3+4 i)$

* Dividing Complex Numbers

Ex. Divide: (a) $\frac{6-\sqrt{-27}}{3}$
(b) $\frac{24+\sqrt{-40}}{-8}$

Conjugate of a Complex Number

The conjugate of a complex number $a+b i$ is $a-b i$, and the conjugate of $a-b i$ is $a+b i$.

Ex. Multiply: $(3+i)(3-i)$

Ex. Divide and simplify to the form $a+b i$.
(a) $\frac{4}{3+i}$
(b) $\frac{2+7 i}{5 i}$

