Appendix D: The Algebra of Functions

* The Sum, Difference, Product, or Quotient of Two Functions

The Algebra of Functions

If f and g are functions and x is in the domain of both functions, then:

1. $(f+g)(x)=f(x)+g(x)$;
2. $(f-g)(x)=f(x)-g(x)$;
3. $(f \cdot g)(x)=f(x) \cdot g(x)$;
4. $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, \quad g(x) \neq 0$.

Ex. Let $f(x)=-3 x+1$ and $g(x)=x^{2}+2$. Find
(a) $(f+g)(-1)$
(b) $(f-g)(4)$
(c) $(f \cdot g)(3)$
(d) $\left(\frac{g}{f}\right)(2)$
(e) $(f+g)(x)$
(f) $(f-g)(x)$
(g) $(f \cdot g)(x)$

Ex. Let $f(x)=3 x^{2}-9 x$ and $g(x)=3 x$. Find $\frac{f}{g}$ and its domain.

Ex. Let $p(x)=6 x-8$ and $q(x)=14 x+4$. Find $\frac{p}{q}$ and its domain.

Ex. Let $f(x)=2 x+3$ and $g(x)=4 x^{2}-4 x-1$. Find $\frac{g}{f}$ and its domain.

