Appendix D: The Algebra of Functions

❖ The Sum, Difference, Product, or Quotient of Two Functions

The Algebra of Functions

If *f* and *g* are functions and *x* is in the domain of both functions, then:

- 1. (f+g)(x) = f(x)+g(x);
- 2. (f-g)(x) = f(x) g(x);
- 3. $(f \cdot g)(x) = f(x) \cdot g(x)$;
- 4. $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \quad g(x) \neq 0$

Ex. Let f(x) = -3x + 1 and $g(x) = x^2 + 2$. Find

(a) (f+g)(-1)

(b) (f-g)(4)

(c) $(f \cdot g)(3)$

(d) $\left(\frac{g}{f}\right)$ (2)

(e) (f+g)(x)

(f) (f-g)(x)

(g)
$$(f \cdot g)(x)$$

Ex. Let
$$f(x) = 3x^2 - 9x$$
 and $g(x) = 3x$. Find $\frac{f}{g}$ and its domain.

Ex. Let
$$p(x) = 6x - 8$$
 and $q(x) = 14x + 4$. Find $\frac{p}{q}$ and its domain.

Ex. Let
$$f(x) = 2x + 3$$
 and $g(x) = 4x^2 - 4x - 1$. Find $\frac{g}{f}$ and its domain.