MATH 0310

Section 16.1 Functions and Graphs Supplement

Objective: Identify a relation as a function given (i) set of points, (ii) a table of values or (iii) an equation.

A relation is a set of ordered pairs. The set of all first elements of the ordered pair is called the domain of a relation, and the set of all second elements of the ordered pair is called the range of a relation.

For example: Find the domain and range of the relation $\{(0,2),(3,3),(-1,0),(3,-2)\}$.
Answer: The domain is the set of all first elements of the ordered pair or $\{-1,0,3\}$ (note repeated values are only written once), and the range is the set of all second elements of the ordered pair, or $\{-2,0,2,3\}$.

If we assume the domain consists of x-values and the range consists of y-values, then a function is a set of ordered pairs that assigns to each x-value exactly one y-value. This means, for example, we cannot have the ordered pairs $(2,3)$ and $(2,4)$ in the relation since the x-value does not have exactly one y-value.

Note it is okay for two different first elements to have the same second element. For example $\{(-2,4),(2,4),(-3,9),(3,9),(0,0)\}$ is a function since each first element has exactly one second element. The domain is $\{-3,-2,0,2,3\}$ and the range is $\{0,4,9\}$.

You Try:
State the domain and range of each relation.

1. $\{(-1,0),(-1,6),(-1,8)\}$
2. $\{(11,6),(-1,-2),(0,0),(3,-2)\}$

Answers:

1. Domain $\{-1\}$ and Range $\{0,6,8\}$
2. Domain $\{-1,0,3,11\}$ and Range $\{-2,0,6\}$

Determine whether each relation is also a function

1. $\{(-1,0),(-1,6),(-1,8)\}$
2. No
3. $\{(11,6),(-1,-2),(0,0),(3,-2)\}$
4. Yes

Determine whether a table of values represents a function.

Note a table of values is just an organized way of presenting the domain values and the range values of a relation. Thus the following table of values is the same as the relation $\{(2,4),(0,0),(-7,10),(10,-7)\}$. Does this table of values represent a function?

x	y
2	4
0	0
-7	10
10	-7

You Try:
Identify the domain and range of each relation and determine whether it is a function.
1.

x	y
5	3
-3	3
7	7
-7	7

Answers:

1. Domain $\{-7,-3,3,7\}$

Range $\{3,7\}$

Yes the relation is a function.
2.

Olympic Site	Year
Lake Placid	1980
	1932
Calgary	1988
Squaw Valley	1960
Salt Lake City	2002

2. Domain \{Lake Placid, Calgary, Squaw Valley, Salt Lake City\}

Range \{1932, 1960, 1980, 1988, 2002\}

No this relation is not a function.

Determine whether an equation represents a function.

Recall that the graph of a linear equation is a line. This means that equations of the form $y=m x+b$ and $y=b$ (where m and b are any real numbers) are functions since each x-coordinate will have exactly one y-coordinate.

For example: Does $y=-\frac{3}{4} x+3$ represent a function? We see from the graph below that each x-coordinate corresponds to exactly one y-coordinate. Thus this equation is a function.

The Vertical-Line Test

If it is possible for a vertical line to cross a graph more than once, then the graph is not the graph of a function.

Note the graph above passes the Vertical-Line Test.
The domain of the graph is $(-\infty, \infty)$ and the range is also $(-\infty, \infty)$.

What about equations of the form $x=a$ (where a is any real number)? This graph is a vertical line, thus each x-coordinate does not have exactly one y-coordinate. In fact all of the x-coordinates are the same in this case and therefore there cannot be exactly one y coordinate.

Note: Nonlinear equations can also be functions.

For instance if we look at the graph of $y=y=-\frac{1}{2}(x-1)^{2}+2$ it passes the Vertical-Line Test.

What about the equation $x=y^{2}$? Does this equation represent a function?

Let's suppose $x=4$. There are two values of y that makes this true.

x	y
4	-2
4	2

What is the conclusion?
Is it safe to say that any equation containing y to a power is not a function?

Investigate with $x=y^{3}$.

What is your conclusion?
You Try:
Which of the following equations are functions?

1. $2 x+6 y=4$
2. $x=3$
3. $y=x^{2}-4$

Answers:

1. Yes
2. No
3. Yes
4. Yes
5. No
6. $y^{2}=2 x+5$
