### 4.4 Properties of Logarithms

Properties of exponents correspond to properties of logarithms.
(logarithm = exponent)

## Logarithmic Properties (p.445)

For $M>0$ and $N>0$ :
The Product Rule $\quad \log _{b}(M N)=\log _{b} M+\log _{b} N$ (Sum of Logs)
The Quotient Rule $\quad \log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N \quad$ (Diff. of Logs)
The Power Rule $\quad \log _{b} M^{p}=p \log _{b} M \quad$ (Prod. of Expo. \& Log)

Ex. Use properties of logarithms to expand each logarithmic expression as much as possible. Write the expression as the sum or difference of logarithms. Where possible, evaluate logarithmic expressions without using a calculator.
a.) $\log _{9}(9 x)=$
b.) $\log \left(\frac{x}{1000}\right)=$
c.) $\log _{b}\left(x y^{3}\right)=$
d.) $\log _{8}\left(\frac{64}{\sqrt{x+1}}\right)=$
e.) $\ln \sqrt[5]{\frac{x}{y}}=$
f.) $\log \left(\frac{x^{4} \sqrt{x^{2}+3}}{(x+3)^{5}}\right)=$

Ex. Use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1 . Where possible, evaluate logarithmic expressions without using a calculator.
[Note: Coefficients of logarithms must be 1 before you can condense them using the product and quotient rules.]
a.) $\log x+7 \log y$
b.) $4 \ln x+7 \ln y-3 \ln z$
c.) $\frac{1}{3}\left(\log _{4} x-\log _{4} y\right)+2 \log _{4}(x+1)$
d.) $\frac{1}{3}\left[5 \ln (x+5)-\ln x-\ln \left(x^{2}-25\right)\right]$
e.) $\log x+\log \left(x^{2}-4\right)-\log 15-\log (x+2)$

## * The Change-of-Base Property

$$
\log _{b} M=\frac{\log M}{\log b}=\frac{\ln M}{\ln b}
$$

(evaluate logs that have a base other than 10 or $e$ )
Ex. Use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. Check the result by using the related exponential form.
a.) $\log _{6} 17$
b.) $\log _{0.3} 19$

Ex. Determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement.
a.) $\ln \left(8 x^{3}\right)=3 \ln (2 x)$
b.) $\ln x+\ln (2 x)=\ln (3 x)$
c.) $\frac{\log (x+2)}{\log (x-1)}=\log (x+2)-\log (x-1)$

