2.6 Transformations of Graphs

This section discusses certain "families" of functions. It can be very helpful to know the general shape of a graph when you see its equation. Table 2-2 (p.229) shows the various general equations for which you should know the graph....without having to graph them.

* The Graph of $y=f(x)+k \& y=f(x)-k$

Use a graphing calculator to graph and label each on the same grid:
a) $f(x)=x^{2}$
b) $g(x)=x^{2}+2$
c) $h(x)=x^{2}-3$

What happens when constants are added or subtracted on the "outside" of the original function?
\qquad

In general, $f(x)+k$ shifts the graph of \boldsymbol{f} \qquad k units. $f(x)-k$ shifts the graph of \boldsymbol{f} \qquad k units.

* The Graph of $y=f(x+h) \& y=f(x-h)$

Use a graphing calculator to graph and label each on the same grid:
a) $f(x)=|x|$
b) $g(x)=|x+2|$
c) $h(x)=|x-3|$

What happens when constants are added or subtracted on the "inside" of the original function?

In general, $f(x+h)$ shifts the graph of \boldsymbol{f} to the \qquad h units. $f(x-h)$ shifts the graph of \boldsymbol{f} to the \qquad h units.

Ex. Given $f(x)=\sqrt{x+1}-2$.
(a) List and graph the original function.
\qquad
(b) List any shifts.
\qquad
\qquad
(c) Graph.

\qquad

Ex. Use the graph of $f(x)$ given to graph $g(x)=f(x-1)+3$.
To graph this transformation:
1.) Add 1 from each x
2.) Add 3 from each y

* The Graph of $y=-f(x) \& y=f(-x)$

Use a graphing calculator to graph and label each on the same grid:
a) $f(x)=\sqrt{x}$
b) $g(x)=-\sqrt{x}$
c) $h(x)=\sqrt{-x}$

What happens when every " y " is multiplied by $\mathbf{- 1}$?

What happens when every " x " is multiplied by $\mathbf{- 1}$?

In general, $-f(x)$ is a function that is reflected across the \qquad axis. $f(-x)$ is a function that is reflected across the \qquad axis.

* The Graph of $y=a f(x)$

Use a graphing calculator to graph and label each on the same grid:
a) $f(x)=x^{2}$
b) $g(x)=\frac{1}{2} x^{2}$
c) $h(x)=2 x^{2}$

The graph of $g(x)=\frac{1}{2} x^{2}$ is \qquad
than the graph of $f(x)=x^{2}$.

- Notice the y-values are decreased by a factor of $\frac{1}{2}$ from
 the original.
- The graph is pulled down toward the x-axis.

The graph of $h(x)=2 x^{2}$ is \qquad
than the graph of $f(x)=x^{2}$.

- Notice the y-values are increased by a factor of 2 from the original.
- The graph is "stretched" away from the x-axis.

In general, $a f(x)$ is called a \qquad if $0<a<1$.
$a f(x)$ is called a \qquad if $a>1$.
(Each of the original y-values will get multiplied by a.)

Stretching : $c>1$

Shrinking: $0<c<1$

* The Graph of $y=f(a x)$

Use a graphing calculator to graph and label each on the same grid:
a) $f(x)=|x|$
b) $g(x)=\left|\frac{1}{2} x\right|$
c) $h(x)=|2 x|$

The graph of $g(x)=\left|\frac{1}{2} x\right|$ is \qquad
than the graph of $f(x)=|x|$.

- The graph is "stretched" away from the y-axis.

The graph of $h(x)=|2 x|$ is \qquad
than the graph of $f(x)=|x|$.

- The graph is pushed in toward the y-axis.

In general, $f(a x)$ is called a \qquad if $0<a<1$.

$$
f(a x) \text { is called a }
$$

\qquad if $a>1$.
(Each of the original x-values will get divided by a.)

* Sequences of Transformations

(p.236) Summary of Transformations of Functions

Ex. List the transformations.
(a) $T(x)=f(-x)-5$
(b) $T(x)=-2 f(x+1)$

A function involving more than one transformation can be graphed by performing transformations in the following order:
1.) Horizontal Shifting
2.) Stretching or Shrinking
3.) Reflecting
4.) Vertical Shifting

Ex. Use the graph of $f(x)$ shown to graph $T(x)=2 f(x-3)+1$.

Analyze the transformations in order:
1)
2)
3)

Ex. Begin by graphing the cube root function, $f(x)=\sqrt[3]{x}$. Then graph $T(x)=-\sqrt[3]{x-2}+3$.

Original Cube Root Function

\boldsymbol{x}	\boldsymbol{y}
-8	
-1	
0	
1	
8	

NEW Cube Root Function

Analyze the transformations in order:
1)
2)
3)

