2.8 Algebra of Functions and Function Composition

***** The Domain of a Function (REVIEW)

Domain: The set of all input values (*x*-values) for which the value of f(x) (*y*-values) is a real number.

Finding a Function's Domain:

- 1.) The domain is the set of all real numbers, $(-\infty, \infty)$, unless *x* appears in a denominator or a square root.
- 2.) "Fraction" the denominator can NOT equal 0.
 - \rightarrow Set the **expression** in the denominator = **0** and solve.
- 3.) Square Root radicand must be greater than or equal to 0.
 - → Set the expression under the radical sign, $\sqrt{}$, ≥ 0 and solve.

Ex. Find the domain of each function in interval notation.

(a)
$$f(x) = x^2 + x - 12$$
 (b) $f(x) = \frac{x^3}{5}$

(c)
$$f(x) = \frac{5}{x^2 - 2x - 15}$$
 (d) $f(x) = \frac{1}{\frac{4}{x - 2} - 3}$

(e)
$$f(x) = \sqrt{5x-8}$$
 (f) $f(x) = \frac{3x}{\sqrt{x+8}}$

* The Algebra of Functions

If f and g are functions and x is in the domain of both functions, then: 1. Sum: (f+g)(x) = f(x) + g(x) = f + g;2. Difference: (f-g)(x) = f(x) - g(x) = f - g;3. Product: $(f \cdot g)(x) = f(x) \cdot g(x) = f \cdot g;$ 4. Quotient: $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \quad g(x) \neq 0 = \frac{f}{g}, \quad g \neq 0.$

Ex. Let $f(x) = x^2 + 4x - 12$ and g(x) = x - 2. Find f + g, f - g, $f \cdot g$, and $\frac{f}{g}$. Determine the domain for each function. (a) (f + g)(x) (b) (f - g)(x)

(c)
$$(f \cdot g)(x)$$
 (d) $\left(\frac{f}{g}\right)(x)$

Hint: If the function $\frac{f}{g}$ can be simplified, determine the domain *before* simplifying.

F13-CA-Miller Sec. 2.8

Ex. Let
$$f(x) = 6 - \frac{1}{x}$$
 and $g(x) = \frac{1}{x}$. Find each of the following:
(a) $\left(\frac{f}{g}\right)(x)$ (b) The domain of $\left(\frac{f}{g}\right)(x)$

Ex. Let
$$f(x) = -2x+3$$
 and $g(x) = |x+4|$. Find
(a) $(f+g)(0)$ (b) $(f-g)(-3)$

(c)
$$(f \cdot g)(2)$$
 (d) $\left(\frac{f}{g}\right)(6)$

$$\frac{f(x+h)-f(x)}{h}, \quad h \neq 0$$

Steps of finding difference quotient of a function: Step 1: Find f(x+h). Step 2: Subtract f(x) from f(x+h)Step 3: Divide by h Ex. Find the difference quotient if f(x) = 6x + 1.

Ex. Find the difference quotient if $f(x) = x^2 - 5x + 8$.

***** Composite Functions

The composite function $f \circ g$, the composition of f and g, is defined as $(f \circ g)(x) = f(g(x))$.

 $f \circ g$ read "the composition of f and g," "f composed with g," "f circle g"

"plug the *g* function (the second function) into the *f* function (the first function)"

Ex. Given
$$f(x) = 3x^2 - 4$$
; $g(x) = 2x + 5$
Find (a) $(f \circ g)(-2)$ (b) $(g \circ f)(-2)$

(c)
$$(f \circ g)(x)$$

(d) $(g \circ f)(x)$