2.8 Algebra of Functions and Function Composition

* The Domain of a Function (REVIEW)

Domain: The set of all input values (x-values) for which the value of $f(x)$ (y-values) is a real number.

Finding a Function's Domain:

1.) The domain is the set of all real numbers, $(-\infty, \infty)$, unless x appears in a denominator or a square root.
2.) "Fraction" - the denominator can NOT equal 0 .
\rightarrow Set the expression in the denominator $=0$ and solve.
3.) Square Root - radicand must be greater than or equal to 0 .
\rightarrow Set the expression under the radical sign, $\sqrt{ }, \geq 0$ and solve.

Ex. Find the domain of each function in interval notation.
(a) $f(x)=x^{2}+x-12$
(b) $f(x)=\frac{x^{3}}{5}$
(c) $f(x)=\frac{5}{x^{2}-2 x-15}$
(d) $f(x)=\frac{1}{\frac{4}{x-2}-3}$
(e) $f(x)=\sqrt{5 x-8}$
(f) $f(x)=\frac{3 x}{\sqrt{x+8}}$

If f and g are functions and x is in the domain of both functions, then:

1. Sum:

$$
(f+g)(x)=f(x)+g(x)=f+g ;
$$

2. Difference: $\quad(f-g)(x)=f(x)-g(x)=f-g$;
3. Product: $\quad(f \cdot g)(x)=f(x) \cdot g(x)=f \cdot g$;
4. Quotient: $\quad\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, \quad g(x) \neq 0=\frac{f}{g}, \quad g \neq 0$.

Ex. Let $f(x)=x^{2}+4 x-12$ and $g(x)=x-2$. Find $f+g, f-g, f \cdot g$, and $\frac{f}{g}$.
Determine the domain for each function.
(a) $(f+g)(x)$
(b) $(f-g)(x)$
(c) $(f \cdot g)(x)$
(d) $\left(\frac{f}{g}\right)(x)$

Hint: If the function $\frac{f}{g}$ can be simplified, determine the domain before simplifying.

Ex. Let $f(x)=6-\frac{1}{x}$ and $g(x)=\frac{1}{x}$. Find each of the following:
(a) $\left(\frac{f}{g}\right)(x)$
(b) The domain of $\left(\frac{f}{g}\right)(x)$

Ex. Let $f(x)=-2 x+3$ and $g(x)=|x+4|$. Find
(a) $(f+g)(0)$
(b) $(f-g)(-3)$
(c) $(f \cdot g)(2)$
(d) $\left(\frac{f}{g}\right)(6)$

- Difference Quotient of a Function

$$
\frac{f(x+h)-f(x)}{h}, \quad h \neq 0
$$

Steps of finding difference quotient of a function:

Step 1: Find $f(x+h)$.
Step 2: Subtract $f(x)$ from $f(x+h)$
Step 3: Divide by h

Ex. Find the difference quotient if $f(x)=6 x+1$.

Ex. Find the difference quotient if $f(x)=x^{2}-5 x+8$.

* Composite Functions

The composite function $f \circ g$, the composition of f and g, is defined as

$$
(f \circ g)(x)=f(g(x))
$$

$f \circ g$ read "the composition of f and $g, "$ " f composed with g," " f circle $g "$

"plug the g function (the second function) into the f function (the first function)"

Ex. Given $f(x)=3 x^{2}-4 ; g(x)=2 x+5$
Find (a) $(f \circ g)(-2)$
(b) $(g \circ f)(-2)$
(c) $(f \circ g)(x)$
(d) $(g \circ f)(x)$

