3.3 Division of Polynomials and the Remainder and Factor Theorems

* Long Division of Polynomials and the Division Algorithm

Recall: $275 \div 13$

Long Division:

Divisor | Quotient |
| ---: |
| |
| Dividend |
| Remainder |

The Division Algorithm

$f(x)=d(x) \cdot q(x)+r(x)$
Dividend Divisor Quotient Remainder
*** If a power of x is missing in either a dividend or a divisor, add that power of x with a coefficient of 0 and then divide. \rightarrow If there is a missing term, fill in with a 0 .
*** If there is a remainder, write the result in the following form:

$$
\text { quotient }+\frac{\text { remainder }}{\text { divisor }}
$$

Ex. Divide using long division. State the quotient, $q(x)$, and the remainder, $r(x)$.
(a) $\left(6 x^{3}+17 x^{2}+27 x+20\right) \div(3 x+4)$

Check:

$$
6 x^{3}+17 x^{2}+27 x+20=(3 x+4)(\quad)
$$

Since the remainder is 0 , we can say that $(3 x+4)$ is a factor of $6 x^{3}+17 x^{2}+27 x+20$.
(b) $\frac{18 x^{4}+9 x^{3}+3 x^{2}}{3 x^{2}+1}$
(c) $\frac{x^{3}-2 x^{2}-5 x+6}{x-3}$

* Dividing Polynomials Using Synthetic Division

Synthetic Division: the divisor must be of the form $x-c$.
$\frac{c \perp \text { Coefficients of the Dividend }}{\text { Quotient Remainder }}$

*** The degree of the first term of the quotient is one less than the degree of the first term of the dividend.
*** Synthetic division requires that you divide by the ZERO that corresponds to the factor.

$$
\begin{aligned}
& x-c=0 \\
& x=c(\mathrm{ZERO})
\end{aligned}
$$

Ex. Divide using synthetic division.
(a) $\frac{x^{3}-2 x^{2}-5 x+6}{x-3}$
(b) $\left(x^{2}-6 x-6 x^{3}+x^{4}\right) \div(6+x)$

The Remainder Theorem

The Remainder Theorem

If the polynomial $f(x)$ is divided by $x-c$, then the remainder is $f(c)$.

Ex. Use synthetic division and the Remainder Theorem to find $f(3)$ where $f(x)=x^{3}-7 x^{2}+5 x-6$.

Ex. (\#48) Use the remainder theorem to determine if the given number c is a zero of the polynomial.
$g(x)=2 x^{4}+13 x^{3}-10 x^{2}-19 x+14$
(a) $c=-2$
(b) $c=-7$

The Factor Theorem

The Factor Theorem

Let $f(x)$ be a polynomial.
a) If $f(c)=0$, then polynomial $x-c$ is a factor of $f(x)$.
b) If $x-c$ is a factor of $f(x)$, then $f(c)=0$.

Ex. (\#55) Use the factor theorem to determine if the given binomial is a factor of $f(x)=x^{4}+11 x^{3}+41 x^{2}+61 x+30$.
(a) $x+5$
(b) $x-2$

Ex. (a) Factor $f(x)=2 x^{3}-3 x^{2}-11 x+6$, given that -2 is a zero.
(b) Solve. $2 x^{3}-3 x^{2}-11 x+6=0$

Ex. (\#102) (a) Factor $f(x)=x^{3}-3 x^{2}+100 x-300$, given that 3 is a zero.
(b) Solve. $x^{3}-3 x^{2}+100 x-300=0$

