3.4 Zeros of Polynomials

In this section, we study methods for finding zeros of polynomial functions.
Remember: the relationship among zeros, roots, and x-intercepts.
The zeros of a function are the roots, or solutions, of the equation $f(x)=0$.
The real zeros, or real roots, are the \boldsymbol{x}-intercepts of the graph of f.

Rational Zero Theorem

This theorem provides us with a tool that we can use to make a list of all possible rational zeros of a polynomial function.

The Rational Zero Theorem

If $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$ has integer coefficients and $\frac{p}{q}$ is a rational zero of f, then p is a factor of the constant term, a_{0}, and \boldsymbol{q} is a factor of the leading coefficient, a_{n}.

Find all the possible rational zeros:

1.) \boldsymbol{p} : List all the integers that are factors of the constant term.
2.) \boldsymbol{q} : List all the integers that are factors of the leading coefficient.
3.) Possible rational zeros $=\frac{\text { Factors of the constant term }}{\text { Factors of the leading coefficient }}=\frac{p}{q}$

Ex. Use the Rational Zero Theorem to list all possible rational zeros for the given function.

$$
f(x)=-4 x^{4}+5 x^{3}-7 x^{2}-6 x+8
$$

$p:$ \qquad (factors of 8)
q : \qquad (factors of -4) $\frac{p}{q}:$ \qquad

Find all real zeros of a polynomial function $f(x)$:
Step 1: Find all possible rational zeros $\left(\pm \frac{p}{q}\right)$.
Step 2: Graph the function and determine which zeros (x-intercepts on the graph) to use in synthetic division.
Step 3: Perform synthetic division to determine which possible zeros yield a remainder of zero. If the degree of a polynomial is 3 or higher, continue to use synthetic division (repeat Step 2 to Step 3) until another zero is found.
Step 4: Rewrite the function as a product of factors, linear and quadratic. Zeros of the quadratic factor are found by factoring, the quadratic formula, or the square root property.
Step 5: Solve $f(x)=0$.

Properties of Roots of Polynomial Equations

1. If a polynomial equation is of degree n, then counting multiple roots separately, the equation has n roots.
2. If $a+b i$ is a root of a polynomial equation with real coefficients $(b \neq 0)$, then the imaginary number $a-b i$ is also a root. Imaginary roots, if they exist, occur in conjugate pairs.

The Fundamental Theorem of Algebra

If $f(x)$ is a polynomial of degree $n \geq 1$ with complex coefficients, then $f(x)$ has at least one complex zero.

Ex. Find all zeros of $f(x)=2 x^{4}+3 x^{3}-15 x^{2}-32 x-12$.

Ex. (\#22) Find all zeros of $f(x)=7 x^{3}-x^{2}-21 x+3$.

Ex. (\#38) A polynomial $f(x)$ and one or more of its zeros is given.

$$
f(x)=2 x^{5}-5 x^{4}-4 x^{3}-22 x^{2}+50 x+75 ;-1-2 i \text { and } \frac{5}{2} \text { are zeros }
$$

(a) Find all the zeros.
(b) Factor $f(x)$ as a product of linear factors.
(c) Solve $f(x)=0$ the equation.

